Refraction through a Glass Slab, and Total Internal Reflection
Ray Optics

282249 Match Column I and Column II
|Column I|Column II|
|
|(i) Interference|(P) Coherent sources|
|(ii) Brewster's Law|(Q) \(\mu=\frac{1}{\sin C}\)|
|(iii) Malus Law|(R) \(\mu=\tan \theta_p\)|
|(iv) Total Internal|(S) \(I=I_0 \cos ^2 \theta\) reflection|

1 (i) - $\mathrm{P}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{Q}$
2 (i) - $\mathrm{P}$,(ii) - $\mathrm{R}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{Q}$
3 (i) - $\mathrm{Q}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{P}$
4 (i) - $\mathrm{R}$,(ii) - $\mathrm{Q}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{P}$
Ray Optics

282250 A printed page is kept pressed by a transparent cube of edge \(t\). The refractive index of the cube varies as \(\mu(z)=1+\frac{z}{t}\), where \(z\) is the vertical distance from bottom of the cube. If viewed from top, then the printed letters appear to be shifted by an amount

1 \((1-\ln 2) \mathrm{t}\)
2 \((2 \ln 2-1) \mathrm{t}\)
3 \(\frac{\mathrm{t}}{2 \ln 2}\)
4 \(\frac{2 \mathrm{t}}{3 \ln 2}\)
Ray Optics

282251 A beaker contains oil upto a height of \(28 \mathrm{~mm}\) and water upto of \(26 \mathrm{~mm}\). Find the apparent shift in position of the bottom of the beaker when viewed from the top \(\left(n_{\text {water }}=1.33 n_{\text {oil }}=1.4\right)\)

1 \(54 \mathrm{~mm}\)
2 \(32 \mathrm{~mm}\)
3 \(28 \mathrm{~mm}\)
4 \(14 \mathrm{~mm}\)
Ray Optics

282252 Considering the fact that the speed of light in glass is not independent of the colour of light which of the statement is true?

1 Violet light travels slower than red light
2 Violet light travels faster than red light
3 Violet light travels same as red light
4 Only white light will be travelling
Ray Optics

282249 Match Column I and Column II
|Column I|Column II|
|
|(i) Interference|(P) Coherent sources|
|(ii) Brewster's Law|(Q) \(\mu=\frac{1}{\sin C}\)|
|(iii) Malus Law|(R) \(\mu=\tan \theta_p\)|
|(iv) Total Internal|(S) \(I=I_0 \cos ^2 \theta\) reflection|

1 (i) - $\mathrm{P}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{Q}$
2 (i) - $\mathrm{P}$,(ii) - $\mathrm{R}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{Q}$
3 (i) - $\mathrm{Q}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{P}$
4 (i) - $\mathrm{R}$,(ii) - $\mathrm{Q}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{P}$
Ray Optics

282250 A printed page is kept pressed by a transparent cube of edge \(t\). The refractive index of the cube varies as \(\mu(z)=1+\frac{z}{t}\), where \(z\) is the vertical distance from bottom of the cube. If viewed from top, then the printed letters appear to be shifted by an amount

1 \((1-\ln 2) \mathrm{t}\)
2 \((2 \ln 2-1) \mathrm{t}\)
3 \(\frac{\mathrm{t}}{2 \ln 2}\)
4 \(\frac{2 \mathrm{t}}{3 \ln 2}\)
Ray Optics

282251 A beaker contains oil upto a height of \(28 \mathrm{~mm}\) and water upto of \(26 \mathrm{~mm}\). Find the apparent shift in position of the bottom of the beaker when viewed from the top \(\left(n_{\text {water }}=1.33 n_{\text {oil }}=1.4\right)\)

1 \(54 \mathrm{~mm}\)
2 \(32 \mathrm{~mm}\)
3 \(28 \mathrm{~mm}\)
4 \(14 \mathrm{~mm}\)
Ray Optics

282252 Considering the fact that the speed of light in glass is not independent of the colour of light which of the statement is true?

1 Violet light travels slower than red light
2 Violet light travels faster than red light
3 Violet light travels same as red light
4 Only white light will be travelling
Ray Optics

282249 Match Column I and Column II
|Column I|Column II|
|
|(i) Interference|(P) Coherent sources|
|(ii) Brewster's Law|(Q) \(\mu=\frac{1}{\sin C}\)|
|(iii) Malus Law|(R) \(\mu=\tan \theta_p\)|
|(iv) Total Internal|(S) \(I=I_0 \cos ^2 \theta\) reflection|

1 (i) - $\mathrm{P}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{Q}$
2 (i) - $\mathrm{P}$,(ii) - $\mathrm{R}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{Q}$
3 (i) - $\mathrm{Q}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{P}$
4 (i) - $\mathrm{R}$,(ii) - $\mathrm{Q}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{P}$
Ray Optics

282250 A printed page is kept pressed by a transparent cube of edge \(t\). The refractive index of the cube varies as \(\mu(z)=1+\frac{z}{t}\), where \(z\) is the vertical distance from bottom of the cube. If viewed from top, then the printed letters appear to be shifted by an amount

1 \((1-\ln 2) \mathrm{t}\)
2 \((2 \ln 2-1) \mathrm{t}\)
3 \(\frac{\mathrm{t}}{2 \ln 2}\)
4 \(\frac{2 \mathrm{t}}{3 \ln 2}\)
Ray Optics

282251 A beaker contains oil upto a height of \(28 \mathrm{~mm}\) and water upto of \(26 \mathrm{~mm}\). Find the apparent shift in position of the bottom of the beaker when viewed from the top \(\left(n_{\text {water }}=1.33 n_{\text {oil }}=1.4\right)\)

1 \(54 \mathrm{~mm}\)
2 \(32 \mathrm{~mm}\)
3 \(28 \mathrm{~mm}\)
4 \(14 \mathrm{~mm}\)
Ray Optics

282252 Considering the fact that the speed of light in glass is not independent of the colour of light which of the statement is true?

1 Violet light travels slower than red light
2 Violet light travels faster than red light
3 Violet light travels same as red light
4 Only white light will be travelling
Ray Optics

282249 Match Column I and Column II
|Column I|Column II|
|
|(i) Interference|(P) Coherent sources|
|(ii) Brewster's Law|(Q) \(\mu=\frac{1}{\sin C}\)|
|(iii) Malus Law|(R) \(\mu=\tan \theta_p\)|
|(iv) Total Internal|(S) \(I=I_0 \cos ^2 \theta\) reflection|

1 (i) - $\mathrm{P}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{Q}$
2 (i) - $\mathrm{P}$,(ii) - $\mathrm{R}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{Q}$
3 (i) - $\mathrm{Q}$,(ii) - $\mathrm{S}$,(iii) - $\mathrm{R}$,(iv) - $\mathrm{P}$
4 (i) - $\mathrm{R}$,(ii) - $\mathrm{Q}$,(iii) - $\mathrm{S}$,(iv) - $\mathrm{P}$
Ray Optics

282250 A printed page is kept pressed by a transparent cube of edge \(t\). The refractive index of the cube varies as \(\mu(z)=1+\frac{z}{t}\), where \(z\) is the vertical distance from bottom of the cube. If viewed from top, then the printed letters appear to be shifted by an amount

1 \((1-\ln 2) \mathrm{t}\)
2 \((2 \ln 2-1) \mathrm{t}\)
3 \(\frac{\mathrm{t}}{2 \ln 2}\)
4 \(\frac{2 \mathrm{t}}{3 \ln 2}\)
Ray Optics

282251 A beaker contains oil upto a height of \(28 \mathrm{~mm}\) and water upto of \(26 \mathrm{~mm}\). Find the apparent shift in position of the bottom of the beaker when viewed from the top \(\left(n_{\text {water }}=1.33 n_{\text {oil }}=1.4\right)\)

1 \(54 \mathrm{~mm}\)
2 \(32 \mathrm{~mm}\)
3 \(28 \mathrm{~mm}\)
4 \(14 \mathrm{~mm}\)
Ray Optics

282252 Considering the fact that the speed of light in glass is not independent of the colour of light which of the statement is true?

1 Violet light travels slower than red light
2 Violet light travels faster than red light
3 Violet light travels same as red light
4 Only white light will be travelling