Refraction through a Glass Slab, and Total Internal Reflection
Ray Optics

282316 The twinkling effect of star light is due to

1 total internal reflection
2 high dense matter of star
3 constant burning of hydrogen in the star
4 the fluctuating apparent position of the star being slightly different from the actual position of the star
Ray Optics

282317 An optical fiber can offer a band width of

1 \(250 \mathrm{MHz}\)
2 \(100 \mathrm{GHz}\)
3 \(750 \mathrm{MHz}\)
4 \(100 \mathrm{MHz}\)
Ray Optics

282201 Light travels a distance \(x\) in time \(t_1\) in air and \(10 x\) in time \(t_2\) in another denser medium. What is the critical angle for this medium?

1 \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right)\)
2 \(\sin ^{-1}\left(\frac{t_2}{t_1}\right)\)
3 \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right)\)
4 \(\sin ^{-1}\left(\frac{t_1}{10 t_2}\right)\)
Ray Optics

282202 A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index \(\frac{5}{3}\) is poured inside the bucket, then microscope have to be raised by \(30 \mathrm{~cm}\) to focus the object again. The height of the liquid in the bucket is:

1 \(12 \mathrm{~cm}\)
2 \(18 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\)
4 \(75 \mathrm{~cm}\)
Ray Optics

282203 A vessel of depth 'd' is half filled with oil of refractive index \(n_1\) and the other half is filled with water of refractive index \(n_2\). The apparent depth of this vessel when viewed from above will be -

1 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
2 \(\frac{d\left(n_1+n_2\right)}{2 n_1 n_2}\)
3 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{2\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
4 \(\frac{2 \mathrm{~d}\left(\mathrm{n}_1+\mathrm{n}_2\right)}{\mathrm{n}_1 \mathrm{n}_2}\)
Ray Optics

282316 The twinkling effect of star light is due to

1 total internal reflection
2 high dense matter of star
3 constant burning of hydrogen in the star
4 the fluctuating apparent position of the star being slightly different from the actual position of the star
Ray Optics

282317 An optical fiber can offer a band width of

1 \(250 \mathrm{MHz}\)
2 \(100 \mathrm{GHz}\)
3 \(750 \mathrm{MHz}\)
4 \(100 \mathrm{MHz}\)
Ray Optics

282201 Light travels a distance \(x\) in time \(t_1\) in air and \(10 x\) in time \(t_2\) in another denser medium. What is the critical angle for this medium?

1 \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right)\)
2 \(\sin ^{-1}\left(\frac{t_2}{t_1}\right)\)
3 \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right)\)
4 \(\sin ^{-1}\left(\frac{t_1}{10 t_2}\right)\)
Ray Optics

282202 A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index \(\frac{5}{3}\) is poured inside the bucket, then microscope have to be raised by \(30 \mathrm{~cm}\) to focus the object again. The height of the liquid in the bucket is:

1 \(12 \mathrm{~cm}\)
2 \(18 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\)
4 \(75 \mathrm{~cm}\)
Ray Optics

282203 A vessel of depth 'd' is half filled with oil of refractive index \(n_1\) and the other half is filled with water of refractive index \(n_2\). The apparent depth of this vessel when viewed from above will be -

1 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
2 \(\frac{d\left(n_1+n_2\right)}{2 n_1 n_2}\)
3 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{2\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
4 \(\frac{2 \mathrm{~d}\left(\mathrm{n}_1+\mathrm{n}_2\right)}{\mathrm{n}_1 \mathrm{n}_2}\)
Ray Optics

282316 The twinkling effect of star light is due to

1 total internal reflection
2 high dense matter of star
3 constant burning of hydrogen in the star
4 the fluctuating apparent position of the star being slightly different from the actual position of the star
Ray Optics

282317 An optical fiber can offer a band width of

1 \(250 \mathrm{MHz}\)
2 \(100 \mathrm{GHz}\)
3 \(750 \mathrm{MHz}\)
4 \(100 \mathrm{MHz}\)
Ray Optics

282201 Light travels a distance \(x\) in time \(t_1\) in air and \(10 x\) in time \(t_2\) in another denser medium. What is the critical angle for this medium?

1 \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right)\)
2 \(\sin ^{-1}\left(\frac{t_2}{t_1}\right)\)
3 \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right)\)
4 \(\sin ^{-1}\left(\frac{t_1}{10 t_2}\right)\)
Ray Optics

282202 A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index \(\frac{5}{3}\) is poured inside the bucket, then microscope have to be raised by \(30 \mathrm{~cm}\) to focus the object again. The height of the liquid in the bucket is:

1 \(12 \mathrm{~cm}\)
2 \(18 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\)
4 \(75 \mathrm{~cm}\)
Ray Optics

282203 A vessel of depth 'd' is half filled with oil of refractive index \(n_1\) and the other half is filled with water of refractive index \(n_2\). The apparent depth of this vessel when viewed from above will be -

1 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
2 \(\frac{d\left(n_1+n_2\right)}{2 n_1 n_2}\)
3 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{2\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
4 \(\frac{2 \mathrm{~d}\left(\mathrm{n}_1+\mathrm{n}_2\right)}{\mathrm{n}_1 \mathrm{n}_2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ray Optics

282316 The twinkling effect of star light is due to

1 total internal reflection
2 high dense matter of star
3 constant burning of hydrogen in the star
4 the fluctuating apparent position of the star being slightly different from the actual position of the star
Ray Optics

282317 An optical fiber can offer a band width of

1 \(250 \mathrm{MHz}\)
2 \(100 \mathrm{GHz}\)
3 \(750 \mathrm{MHz}\)
4 \(100 \mathrm{MHz}\)
Ray Optics

282201 Light travels a distance \(x\) in time \(t_1\) in air and \(10 x\) in time \(t_2\) in another denser medium. What is the critical angle for this medium?

1 \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right)\)
2 \(\sin ^{-1}\left(\frac{t_2}{t_1}\right)\)
3 \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right)\)
4 \(\sin ^{-1}\left(\frac{t_1}{10 t_2}\right)\)
Ray Optics

282202 A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index \(\frac{5}{3}\) is poured inside the bucket, then microscope have to be raised by \(30 \mathrm{~cm}\) to focus the object again. The height of the liquid in the bucket is:

1 \(12 \mathrm{~cm}\)
2 \(18 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\)
4 \(75 \mathrm{~cm}\)
Ray Optics

282203 A vessel of depth 'd' is half filled with oil of refractive index \(n_1\) and the other half is filled with water of refractive index \(n_2\). The apparent depth of this vessel when viewed from above will be -

1 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
2 \(\frac{d\left(n_1+n_2\right)}{2 n_1 n_2}\)
3 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{2\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
4 \(\frac{2 \mathrm{~d}\left(\mathrm{n}_1+\mathrm{n}_2\right)}{\mathrm{n}_1 \mathrm{n}_2}\)
Ray Optics

282316 The twinkling effect of star light is due to

1 total internal reflection
2 high dense matter of star
3 constant burning of hydrogen in the star
4 the fluctuating apparent position of the star being slightly different from the actual position of the star
Ray Optics

282317 An optical fiber can offer a band width of

1 \(250 \mathrm{MHz}\)
2 \(100 \mathrm{GHz}\)
3 \(750 \mathrm{MHz}\)
4 \(100 \mathrm{MHz}\)
Ray Optics

282201 Light travels a distance \(x\) in time \(t_1\) in air and \(10 x\) in time \(t_2\) in another denser medium. What is the critical angle for this medium?

1 \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right)\)
2 \(\sin ^{-1}\left(\frac{t_2}{t_1}\right)\)
3 \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right)\)
4 \(\sin ^{-1}\left(\frac{t_1}{10 t_2}\right)\)
Ray Optics

282202 A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index \(\frac{5}{3}\) is poured inside the bucket, then microscope have to be raised by \(30 \mathrm{~cm}\) to focus the object again. The height of the liquid in the bucket is:

1 \(12 \mathrm{~cm}\)
2 \(18 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\)
4 \(75 \mathrm{~cm}\)
Ray Optics

282203 A vessel of depth 'd' is half filled with oil of refractive index \(n_1\) and the other half is filled with water of refractive index \(n_2\). The apparent depth of this vessel when viewed from above will be -

1 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
2 \(\frac{d\left(n_1+n_2\right)}{2 n_1 n_2}\)
3 \(\frac{\mathrm{dn}_1 \mathrm{n}_2}{2\left(\mathrm{n}_1+\mathrm{n}_2\right)}\)
4 \(\frac{2 \mathrm{~d}\left(\mathrm{n}_1+\mathrm{n}_2\right)}{\mathrm{n}_1 \mathrm{n}_2}\)