Reflection of Light, Reflection, Mirror Terms, Optical Reversibility, Plane Mirr
Ray Optics

281928 Find the value of $\theta$ in the given diagram.
![original image](https://cdn.mathpix.com/snip/images/Lq6qK5eXgdpp7DETXhmZCfzzkgo4wu3sX2FUxr8n_Do.original.fullsize.png)

1 $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
2 $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
3 $\sin ^{-1}\left(\frac{1}{2}\right)$
4 $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
Ray Optics

281929 A ray of light is reflected by a plane mirror. $\hat{\mathbf{e}}_0, \hat{\mathrm{e}}$ and $\hat{\mathbf{n}}$ be the unit vectors along the incident ray, reflected ray and the normal to the reflecting surface respectively.
Which of the following gives an expression for $\hat{\mathrm{e}}$ ?
![original image](https://cdn.mathpix.com/snip/images/xFQOnvMN79HWuqkPare1ghjxoh_r9zehAfh7uKNFEw0.original.fullsize.png)

1 $\hat{\mathbf{e}}_0+2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
2 $\hat{\mathbf{e}}_0-2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
3 $\hat{\mathbf{e}}_0-\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
4 $\hat{\mathbf{e}}_0+\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
Ray Optics

281930 A girl of height $150 \mathrm{~cm}$ with her eye level at 140 $\mathrm{cm}$ stands in front of plane mirror of height $\mathbf{7 5}$ $\mathrm{cm}$ fixed to a wall. The lower edge of the mirror is at a height of $85 \mathrm{~cm}$ above her feet level. The height of her image the girl can see in the mirror is

1 $130 \mathrm{~cm}$
2 $140 \mathrm{~cm}$
3 $120 \mathrm{~cm}$
4 $150 \mathrm{~cm}$
Ray Optics

281931 You are asked to design a shaving mirror assuming that a person keeps it $10 \mathrm{~cm}$ from his face and views the magnified image of the face at the closest comfortable distance of $25 \mathrm{~cm}$. The radius of curvature of the mirror would then be:

1 $60 \mathrm{~cm}$
2 $-24 \mathrm{~cm}$
3 $-60 \mathrm{~cm}$
4 $24 \mathrm{~cm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ray Optics

281928 Find the value of $\theta$ in the given diagram.
![original image](https://cdn.mathpix.com/snip/images/Lq6qK5eXgdpp7DETXhmZCfzzkgo4wu3sX2FUxr8n_Do.original.fullsize.png)

1 $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
2 $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
3 $\sin ^{-1}\left(\frac{1}{2}\right)$
4 $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
Ray Optics

281929 A ray of light is reflected by a plane mirror. $\hat{\mathbf{e}}_0, \hat{\mathrm{e}}$ and $\hat{\mathbf{n}}$ be the unit vectors along the incident ray, reflected ray and the normal to the reflecting surface respectively.
Which of the following gives an expression for $\hat{\mathrm{e}}$ ?
![original image](https://cdn.mathpix.com/snip/images/xFQOnvMN79HWuqkPare1ghjxoh_r9zehAfh7uKNFEw0.original.fullsize.png)

1 $\hat{\mathbf{e}}_0+2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
2 $\hat{\mathbf{e}}_0-2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
3 $\hat{\mathbf{e}}_0-\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
4 $\hat{\mathbf{e}}_0+\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
Ray Optics

281930 A girl of height $150 \mathrm{~cm}$ with her eye level at 140 $\mathrm{cm}$ stands in front of plane mirror of height $\mathbf{7 5}$ $\mathrm{cm}$ fixed to a wall. The lower edge of the mirror is at a height of $85 \mathrm{~cm}$ above her feet level. The height of her image the girl can see in the mirror is

1 $130 \mathrm{~cm}$
2 $140 \mathrm{~cm}$
3 $120 \mathrm{~cm}$
4 $150 \mathrm{~cm}$
Ray Optics

281931 You are asked to design a shaving mirror assuming that a person keeps it $10 \mathrm{~cm}$ from his face and views the magnified image of the face at the closest comfortable distance of $25 \mathrm{~cm}$. The radius of curvature of the mirror would then be:

1 $60 \mathrm{~cm}$
2 $-24 \mathrm{~cm}$
3 $-60 \mathrm{~cm}$
4 $24 \mathrm{~cm}$
Ray Optics

281928 Find the value of $\theta$ in the given diagram.
![original image](https://cdn.mathpix.com/snip/images/Lq6qK5eXgdpp7DETXhmZCfzzkgo4wu3sX2FUxr8n_Do.original.fullsize.png)

1 $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
2 $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
3 $\sin ^{-1}\left(\frac{1}{2}\right)$
4 $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
Ray Optics

281929 A ray of light is reflected by a plane mirror. $\hat{\mathbf{e}}_0, \hat{\mathrm{e}}$ and $\hat{\mathbf{n}}$ be the unit vectors along the incident ray, reflected ray and the normal to the reflecting surface respectively.
Which of the following gives an expression for $\hat{\mathrm{e}}$ ?
![original image](https://cdn.mathpix.com/snip/images/xFQOnvMN79HWuqkPare1ghjxoh_r9zehAfh7uKNFEw0.original.fullsize.png)

1 $\hat{\mathbf{e}}_0+2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
2 $\hat{\mathbf{e}}_0-2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
3 $\hat{\mathbf{e}}_0-\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
4 $\hat{\mathbf{e}}_0+\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
Ray Optics

281930 A girl of height $150 \mathrm{~cm}$ with her eye level at 140 $\mathrm{cm}$ stands in front of plane mirror of height $\mathbf{7 5}$ $\mathrm{cm}$ fixed to a wall. The lower edge of the mirror is at a height of $85 \mathrm{~cm}$ above her feet level. The height of her image the girl can see in the mirror is

1 $130 \mathrm{~cm}$
2 $140 \mathrm{~cm}$
3 $120 \mathrm{~cm}$
4 $150 \mathrm{~cm}$
Ray Optics

281931 You are asked to design a shaving mirror assuming that a person keeps it $10 \mathrm{~cm}$ from his face and views the magnified image of the face at the closest comfortable distance of $25 \mathrm{~cm}$. The radius of curvature of the mirror would then be:

1 $60 \mathrm{~cm}$
2 $-24 \mathrm{~cm}$
3 $-60 \mathrm{~cm}$
4 $24 \mathrm{~cm}$
Ray Optics

281928 Find the value of $\theta$ in the given diagram.
![original image](https://cdn.mathpix.com/snip/images/Lq6qK5eXgdpp7DETXhmZCfzzkgo4wu3sX2FUxr8n_Do.original.fullsize.png)

1 $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
2 $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
3 $\sin ^{-1}\left(\frac{1}{2}\right)$
4 $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
Ray Optics

281929 A ray of light is reflected by a plane mirror. $\hat{\mathbf{e}}_0, \hat{\mathrm{e}}$ and $\hat{\mathbf{n}}$ be the unit vectors along the incident ray, reflected ray and the normal to the reflecting surface respectively.
Which of the following gives an expression for $\hat{\mathrm{e}}$ ?
![original image](https://cdn.mathpix.com/snip/images/xFQOnvMN79HWuqkPare1ghjxoh_r9zehAfh7uKNFEw0.original.fullsize.png)

1 $\hat{\mathbf{e}}_0+2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
2 $\hat{\mathbf{e}}_0-2\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
3 $\hat{\mathbf{e}}_0-\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
4 $\hat{\mathbf{e}}_0+\left(\hat{\mathbf{e}}_0 \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$
Ray Optics

281930 A girl of height $150 \mathrm{~cm}$ with her eye level at 140 $\mathrm{cm}$ stands in front of plane mirror of height $\mathbf{7 5}$ $\mathrm{cm}$ fixed to a wall. The lower edge of the mirror is at a height of $85 \mathrm{~cm}$ above her feet level. The height of her image the girl can see in the mirror is

1 $130 \mathrm{~cm}$
2 $140 \mathrm{~cm}$
3 $120 \mathrm{~cm}$
4 $150 \mathrm{~cm}$
Ray Optics

281931 You are asked to design a shaving mirror assuming that a person keeps it $10 \mathrm{~cm}$ from his face and views the magnified image of the face at the closest comfortable distance of $25 \mathrm{~cm}$. The radius of curvature of the mirror would then be:

1 $60 \mathrm{~cm}$
2 $-24 \mathrm{~cm}$
3 $-60 \mathrm{~cm}$
4 $24 \mathrm{~cm}$