02. AC VOLTAGE APPLIED TO A RESISTOR
AC (NCERT)

274616 An alternating current is given by $i={{i}_{1}}\text{cos}\omega t+{{i}_{2}}\text{sin}\omega t$ The rms current is given by

1 $\frac{{{i}_{1}}+{{i}_{2}}}{\sqrt{2}}$
2 $\frac{\left| {{i}_{1}}+{{i}_{2}} \right|}{\sqrt{2}}$
3 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{2}}$
4 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{\sqrt{2}}}$
AC (NCERT)

274617 The voltage of an ac supply varies with time $\left( t \right)$ as $V=120\text{sin}100\pi \text{tcos}100\pi \text{t}$. The maximum voltage and frequency respectively are

1 120 volt,$100\text{Hz}$
2 $\frac{120}{\sqrt{2}}$ volt, $100\text{Hz}$
3 60 volt,$200\text{Hz}$
4 60 volt,$100\text{Hz}$
AC (NCERT)

274618 A resistance of $40\text{ }\!\!\Omega\!\!\text{ }$ is connected to a source of alternating current rated $220\text{V},50\text{Hz}$. Find the time taken by the current to change from its maximum value to $\text{rms}$ value :

1 $2.5\text{ms}$
2 $1.25\text{ms}$
3 $2.5\text{s}$
4 $0.25\text{s}$
AC (NCERT)

274619 A resistance of $20\text{ohm}$ is connected to a source of an alternating potential $\text{V}=200\text{cos}\left( 100\pi \text{t} \right)$. The time taken by the current to change from its peak value to rms value is

1 $2.5\times {{10}^{-3}}\text{s}$
2 $25\times {{10}^{-3}}\text{s}$
3 $0.25\text{s}$
4 $0.20\text{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
AC (NCERT)

274616 An alternating current is given by $i={{i}_{1}}\text{cos}\omega t+{{i}_{2}}\text{sin}\omega t$ The rms current is given by

1 $\frac{{{i}_{1}}+{{i}_{2}}}{\sqrt{2}}$
2 $\frac{\left| {{i}_{1}}+{{i}_{2}} \right|}{\sqrt{2}}$
3 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{2}}$
4 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{\sqrt{2}}}$
AC (NCERT)

274617 The voltage of an ac supply varies with time $\left( t \right)$ as $V=120\text{sin}100\pi \text{tcos}100\pi \text{t}$. The maximum voltage and frequency respectively are

1 120 volt,$100\text{Hz}$
2 $\frac{120}{\sqrt{2}}$ volt, $100\text{Hz}$
3 60 volt,$200\text{Hz}$
4 60 volt,$100\text{Hz}$
AC (NCERT)

274618 A resistance of $40\text{ }\!\!\Omega\!\!\text{ }$ is connected to a source of alternating current rated $220\text{V},50\text{Hz}$. Find the time taken by the current to change from its maximum value to $\text{rms}$ value :

1 $2.5\text{ms}$
2 $1.25\text{ms}$
3 $2.5\text{s}$
4 $0.25\text{s}$
AC (NCERT)

274619 A resistance of $20\text{ohm}$ is connected to a source of an alternating potential $\text{V}=200\text{cos}\left( 100\pi \text{t} \right)$. The time taken by the current to change from its peak value to rms value is

1 $2.5\times {{10}^{-3}}\text{s}$
2 $25\times {{10}^{-3}}\text{s}$
3 $0.25\text{s}$
4 $0.20\text{s}$
AC (NCERT)

274616 An alternating current is given by $i={{i}_{1}}\text{cos}\omega t+{{i}_{2}}\text{sin}\omega t$ The rms current is given by

1 $\frac{{{i}_{1}}+{{i}_{2}}}{\sqrt{2}}$
2 $\frac{\left| {{i}_{1}}+{{i}_{2}} \right|}{\sqrt{2}}$
3 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{2}}$
4 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{\sqrt{2}}}$
AC (NCERT)

274617 The voltage of an ac supply varies with time $\left( t \right)$ as $V=120\text{sin}100\pi \text{tcos}100\pi \text{t}$. The maximum voltage and frequency respectively are

1 120 volt,$100\text{Hz}$
2 $\frac{120}{\sqrt{2}}$ volt, $100\text{Hz}$
3 60 volt,$200\text{Hz}$
4 60 volt,$100\text{Hz}$
AC (NCERT)

274618 A resistance of $40\text{ }\!\!\Omega\!\!\text{ }$ is connected to a source of alternating current rated $220\text{V},50\text{Hz}$. Find the time taken by the current to change from its maximum value to $\text{rms}$ value :

1 $2.5\text{ms}$
2 $1.25\text{ms}$
3 $2.5\text{s}$
4 $0.25\text{s}$
AC (NCERT)

274619 A resistance of $20\text{ohm}$ is connected to a source of an alternating potential $\text{V}=200\text{cos}\left( 100\pi \text{t} \right)$. The time taken by the current to change from its peak value to rms value is

1 $2.5\times {{10}^{-3}}\text{s}$
2 $25\times {{10}^{-3}}\text{s}$
3 $0.25\text{s}$
4 $0.20\text{s}$
AC (NCERT)

274616 An alternating current is given by $i={{i}_{1}}\text{cos}\omega t+{{i}_{2}}\text{sin}\omega t$ The rms current is given by

1 $\frac{{{i}_{1}}+{{i}_{2}}}{\sqrt{2}}$
2 $\frac{\left| {{i}_{1}}+{{i}_{2}} \right|}{\sqrt{2}}$
3 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{2}}$
4 $\sqrt{\frac{\text{i}_{1}^{2}+\text{i}_{2}^{2}}{\sqrt{2}}}$
AC (NCERT)

274617 The voltage of an ac supply varies with time $\left( t \right)$ as $V=120\text{sin}100\pi \text{tcos}100\pi \text{t}$. The maximum voltage and frequency respectively are

1 120 volt,$100\text{Hz}$
2 $\frac{120}{\sqrt{2}}$ volt, $100\text{Hz}$
3 60 volt,$200\text{Hz}$
4 60 volt,$100\text{Hz}$
AC (NCERT)

274618 A resistance of $40\text{ }\!\!\Omega\!\!\text{ }$ is connected to a source of alternating current rated $220\text{V},50\text{Hz}$. Find the time taken by the current to change from its maximum value to $\text{rms}$ value :

1 $2.5\text{ms}$
2 $1.25\text{ms}$
3 $2.5\text{s}$
4 $0.25\text{s}$
AC (NCERT)

274619 A resistance of $20\text{ohm}$ is connected to a source of an alternating potential $\text{V}=200\text{cos}\left( 100\pi \text{t} \right)$. The time taken by the current to change from its peak value to rms value is

1 $2.5\times {{10}^{-3}}\text{s}$
2 $25\times {{10}^{-3}}\text{s}$
3 $0.25\text{s}$
4 $0.20\text{s}$