02. AC VOLTAGE APPLIED TO A RESISTOR
AC (NCERT)

274611 Determine the rms value of the emf given by $\text{E}($ in volt $)=8\text{sin}\left( \omega \text{t} \right)+6\text{sin}\left( 2\omega \text{t} \right)$

1 $5\sqrt{2}\text{V}$
2 $7\sqrt{2}\text{V}$
3 $10\text{V}$
4 $10\sqrt{2}\text{V}$
AC (NCERT)

274612 The alternating current of equivalent value of $\frac{{{I}_{0}}}{\sqrt{2}}$ is

1 peak current
2 r.m.s. current
3 D.C. current
4 all of these
AC (NCERT)

274613 The peak value of the a.c. current flowing through a resistor is given by

1 ${{\text{I}}_{0}}={{\text{e}}_{0}}/\text{R}$
2 $I=e/R$
3 ${{\text{I}}_{0}}={{\text{e}}_{0}}$
4 ${{I}_{0}}=R/{{e}_{0}}$
AC (NCERT)

274614 The sinusoidal A.C. current flows through a resistor of resistance $R$. If the peak current is ${{I}_{p}}$, then power dissipated is

1 $\text{I}_{\text{p}}^{2}\text{Rcos}\theta $
2 $\frac{1}{2}{{I}_{p}}^{2}R$
3 $\frac{4}{\pi }I_{p}^{2}R$
4 $\frac{1}{{{\pi }^{2}}}{{I}_{p}}^{2}R$
AC (NCERT)

274615 The r.m.s value of an a.c. of $50\text{Hz}$ is $10\text{amp}$. The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be

1 $2\times {{10}^{-2}}\text{sec}$ and $14.14\text{amp}$
2 $1\times {{10}^{-2}}\text{sec}$ and $7.07\text{amp}$
3 $5\times {{10}^{-3}}\text{sec}$ and $7.07\text{amp}$
4 $5\times {{10}^{-3}}\text{sec}$ and $14.14\text{amp}$
AC (NCERT)

274611 Determine the rms value of the emf given by $\text{E}($ in volt $)=8\text{sin}\left( \omega \text{t} \right)+6\text{sin}\left( 2\omega \text{t} \right)$

1 $5\sqrt{2}\text{V}$
2 $7\sqrt{2}\text{V}$
3 $10\text{V}$
4 $10\sqrt{2}\text{V}$
AC (NCERT)

274612 The alternating current of equivalent value of $\frac{{{I}_{0}}}{\sqrt{2}}$ is

1 peak current
2 r.m.s. current
3 D.C. current
4 all of these
AC (NCERT)

274613 The peak value of the a.c. current flowing through a resistor is given by

1 ${{\text{I}}_{0}}={{\text{e}}_{0}}/\text{R}$
2 $I=e/R$
3 ${{\text{I}}_{0}}={{\text{e}}_{0}}$
4 ${{I}_{0}}=R/{{e}_{0}}$
AC (NCERT)

274614 The sinusoidal A.C. current flows through a resistor of resistance $R$. If the peak current is ${{I}_{p}}$, then power dissipated is

1 $\text{I}_{\text{p}}^{2}\text{Rcos}\theta $
2 $\frac{1}{2}{{I}_{p}}^{2}R$
3 $\frac{4}{\pi }I_{p}^{2}R$
4 $\frac{1}{{{\pi }^{2}}}{{I}_{p}}^{2}R$
AC (NCERT)

274615 The r.m.s value of an a.c. of $50\text{Hz}$ is $10\text{amp}$. The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be

1 $2\times {{10}^{-2}}\text{sec}$ and $14.14\text{amp}$
2 $1\times {{10}^{-2}}\text{sec}$ and $7.07\text{amp}$
3 $5\times {{10}^{-3}}\text{sec}$ and $7.07\text{amp}$
4 $5\times {{10}^{-3}}\text{sec}$ and $14.14\text{amp}$
AC (NCERT)

274611 Determine the rms value of the emf given by $\text{E}($ in volt $)=8\text{sin}\left( \omega \text{t} \right)+6\text{sin}\left( 2\omega \text{t} \right)$

1 $5\sqrt{2}\text{V}$
2 $7\sqrt{2}\text{V}$
3 $10\text{V}$
4 $10\sqrt{2}\text{V}$
AC (NCERT)

274612 The alternating current of equivalent value of $\frac{{{I}_{0}}}{\sqrt{2}}$ is

1 peak current
2 r.m.s. current
3 D.C. current
4 all of these
AC (NCERT)

274613 The peak value of the a.c. current flowing through a resistor is given by

1 ${{\text{I}}_{0}}={{\text{e}}_{0}}/\text{R}$
2 $I=e/R$
3 ${{\text{I}}_{0}}={{\text{e}}_{0}}$
4 ${{I}_{0}}=R/{{e}_{0}}$
AC (NCERT)

274614 The sinusoidal A.C. current flows through a resistor of resistance $R$. If the peak current is ${{I}_{p}}$, then power dissipated is

1 $\text{I}_{\text{p}}^{2}\text{Rcos}\theta $
2 $\frac{1}{2}{{I}_{p}}^{2}R$
3 $\frac{4}{\pi }I_{p}^{2}R$
4 $\frac{1}{{{\pi }^{2}}}{{I}_{p}}^{2}R$
AC (NCERT)

274615 The r.m.s value of an a.c. of $50\text{Hz}$ is $10\text{amp}$. The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be

1 $2\times {{10}^{-2}}\text{sec}$ and $14.14\text{amp}$
2 $1\times {{10}^{-2}}\text{sec}$ and $7.07\text{amp}$
3 $5\times {{10}^{-3}}\text{sec}$ and $7.07\text{amp}$
4 $5\times {{10}^{-3}}\text{sec}$ and $14.14\text{amp}$
AC (NCERT)

274611 Determine the rms value of the emf given by $\text{E}($ in volt $)=8\text{sin}\left( \omega \text{t} \right)+6\text{sin}\left( 2\omega \text{t} \right)$

1 $5\sqrt{2}\text{V}$
2 $7\sqrt{2}\text{V}$
3 $10\text{V}$
4 $10\sqrt{2}\text{V}$
AC (NCERT)

274612 The alternating current of equivalent value of $\frac{{{I}_{0}}}{\sqrt{2}}$ is

1 peak current
2 r.m.s. current
3 D.C. current
4 all of these
AC (NCERT)

274613 The peak value of the a.c. current flowing through a resistor is given by

1 ${{\text{I}}_{0}}={{\text{e}}_{0}}/\text{R}$
2 $I=e/R$
3 ${{\text{I}}_{0}}={{\text{e}}_{0}}$
4 ${{I}_{0}}=R/{{e}_{0}}$
AC (NCERT)

274614 The sinusoidal A.C. current flows through a resistor of resistance $R$. If the peak current is ${{I}_{p}}$, then power dissipated is

1 $\text{I}_{\text{p}}^{2}\text{Rcos}\theta $
2 $\frac{1}{2}{{I}_{p}}^{2}R$
3 $\frac{4}{\pi }I_{p}^{2}R$
4 $\frac{1}{{{\pi }^{2}}}{{I}_{p}}^{2}R$
AC (NCERT)

274615 The r.m.s value of an a.c. of $50\text{Hz}$ is $10\text{amp}$. The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be

1 $2\times {{10}^{-2}}\text{sec}$ and $14.14\text{amp}$
2 $1\times {{10}^{-2}}\text{sec}$ and $7.07\text{amp}$
3 $5\times {{10}^{-3}}\text{sec}$ and $7.07\text{amp}$
4 $5\times {{10}^{-3}}\text{sec}$ and $14.14\text{amp}$
AC (NCERT)

274611 Determine the rms value of the emf given by $\text{E}($ in volt $)=8\text{sin}\left( \omega \text{t} \right)+6\text{sin}\left( 2\omega \text{t} \right)$

1 $5\sqrt{2}\text{V}$
2 $7\sqrt{2}\text{V}$
3 $10\text{V}$
4 $10\sqrt{2}\text{V}$
AC (NCERT)

274612 The alternating current of equivalent value of $\frac{{{I}_{0}}}{\sqrt{2}}$ is

1 peak current
2 r.m.s. current
3 D.C. current
4 all of these
AC (NCERT)

274613 The peak value of the a.c. current flowing through a resistor is given by

1 ${{\text{I}}_{0}}={{\text{e}}_{0}}/\text{R}$
2 $I=e/R$
3 ${{\text{I}}_{0}}={{\text{e}}_{0}}$
4 ${{I}_{0}}=R/{{e}_{0}}$
AC (NCERT)

274614 The sinusoidal A.C. current flows through a resistor of resistance $R$. If the peak current is ${{I}_{p}}$, then power dissipated is

1 $\text{I}_{\text{p}}^{2}\text{Rcos}\theta $
2 $\frac{1}{2}{{I}_{p}}^{2}R$
3 $\frac{4}{\pi }I_{p}^{2}R$
4 $\frac{1}{{{\pi }^{2}}}{{I}_{p}}^{2}R$
AC (NCERT)

274615 The r.m.s value of an a.c. of $50\text{Hz}$ is $10\text{amp}$. The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be

1 $2\times {{10}^{-2}}\text{sec}$ and $14.14\text{amp}$
2 $1\times {{10}^{-2}}\text{sec}$ and $7.07\text{amp}$
3 $5\times {{10}^{-3}}\text{sec}$ and $7.07\text{amp}$
4 $5\times {{10}^{-3}}\text{sec}$ and $14.14\text{amp}$