03. DISPLACEMENT RELATION IN A PROGRESSIVE WAVE
WAVES (NCERT)

274454 Which of the following equations correctly represents a travelling wave having wavelength $\lambda =4.0\text{cm}$, frequency $\text{v}=100\text{Hz}$ and travelling in positive $\text{x}$-axis direction?

1 $y=A\text{sin}\left[ \left( 0.50\pi \text{c}{{\text{m}}^{-1}} \right)x-\left( 100\pi {{\text{s}}^{-1}} \right)t \right]$
2 $y=A\text{sin}2\pi \left[ \left( 0.25\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( 50{{\text{s}}^{-1}} \right)\text{t} \right]$
3 $y=A\text{sin}\left[ \left( \frac{2\pi }{4}\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( \frac{2\pi }{100}{{\text{s}}^{-1}} \right)\text{t} \right]$
4 $y=A\text{sin}\pi \left[ \left( 0.5\text{c}{{\text{m}}^{-1}} \right)x-\left( 200{{\text{s}}^{-1}} \right)t \right]$
WAVES (NCERT)

274455 A travelling harmonic wave is represented by the equation $y\left( x,\text{t} \right)={{10}^{-3}}\text{sin}\left( 50\text{t}+2x \right)$, where $x$ and $y$ are in meter and $t$ is in seconds. Which of the following is a correct statement about the wave?

1 The wave is propagating along the negative$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
2 The wave is propagating along the positive$\text{x}$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
3 The wave is propagating along the positive$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
4 The wave is propagating along the negative$x$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
WAVES (NCERT)

274436 A progressive wave travelling along the positive $x$-direction is represented by $y\left( x,t \right)=A\text{sin}\left( kx-\omega t+\phi \right)$. Its snapshot at $t=0$ is given in the figure.
For this wave, the phase $\phi $ is:
12.04.2019 Shift 1 Synergy JEE Mains Nikhil D20

1 $-\frac{\pi }{2}$
2 $\pi $
3 0
4 $\frac{\pi }{2}$
WAVES (NCERT)

274437 The equation $y=A\text{si}{{\text{n}}^{2}}\left( kx-\omega t \right)$ represents a wave with

1 amplitude $\text{A}$, frequency $\omega /2\pi $
2 amplitude $A/2$, frequency $\omega /\pi $
3 amplitude $2\text{A}$, frequency $\omega /4\pi $
4 it does not represent a wave motion
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES (NCERT)

274454 Which of the following equations correctly represents a travelling wave having wavelength $\lambda =4.0\text{cm}$, frequency $\text{v}=100\text{Hz}$ and travelling in positive $\text{x}$-axis direction?

1 $y=A\text{sin}\left[ \left( 0.50\pi \text{c}{{\text{m}}^{-1}} \right)x-\left( 100\pi {{\text{s}}^{-1}} \right)t \right]$
2 $y=A\text{sin}2\pi \left[ \left( 0.25\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( 50{{\text{s}}^{-1}} \right)\text{t} \right]$
3 $y=A\text{sin}\left[ \left( \frac{2\pi }{4}\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( \frac{2\pi }{100}{{\text{s}}^{-1}} \right)\text{t} \right]$
4 $y=A\text{sin}\pi \left[ \left( 0.5\text{c}{{\text{m}}^{-1}} \right)x-\left( 200{{\text{s}}^{-1}} \right)t \right]$
WAVES (NCERT)

274455 A travelling harmonic wave is represented by the equation $y\left( x,\text{t} \right)={{10}^{-3}}\text{sin}\left( 50\text{t}+2x \right)$, where $x$ and $y$ are in meter and $t$ is in seconds. Which of the following is a correct statement about the wave?

1 The wave is propagating along the negative$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
2 The wave is propagating along the positive$\text{x}$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
3 The wave is propagating along the positive$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
4 The wave is propagating along the negative$x$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
WAVES (NCERT)

274436 A progressive wave travelling along the positive $x$-direction is represented by $y\left( x,t \right)=A\text{sin}\left( kx-\omega t+\phi \right)$. Its snapshot at $t=0$ is given in the figure.
For this wave, the phase $\phi $ is:
12.04.2019 Shift 1 Synergy JEE Mains Nikhil D20

1 $-\frac{\pi }{2}$
2 $\pi $
3 0
4 $\frac{\pi }{2}$
WAVES (NCERT)

274437 The equation $y=A\text{si}{{\text{n}}^{2}}\left( kx-\omega t \right)$ represents a wave with

1 amplitude $\text{A}$, frequency $\omega /2\pi $
2 amplitude $A/2$, frequency $\omega /\pi $
3 amplitude $2\text{A}$, frequency $\omega /4\pi $
4 it does not represent a wave motion
WAVES (NCERT)

274454 Which of the following equations correctly represents a travelling wave having wavelength $\lambda =4.0\text{cm}$, frequency $\text{v}=100\text{Hz}$ and travelling in positive $\text{x}$-axis direction?

1 $y=A\text{sin}\left[ \left( 0.50\pi \text{c}{{\text{m}}^{-1}} \right)x-\left( 100\pi {{\text{s}}^{-1}} \right)t \right]$
2 $y=A\text{sin}2\pi \left[ \left( 0.25\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( 50{{\text{s}}^{-1}} \right)\text{t} \right]$
3 $y=A\text{sin}\left[ \left( \frac{2\pi }{4}\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( \frac{2\pi }{100}{{\text{s}}^{-1}} \right)\text{t} \right]$
4 $y=A\text{sin}\pi \left[ \left( 0.5\text{c}{{\text{m}}^{-1}} \right)x-\left( 200{{\text{s}}^{-1}} \right)t \right]$
WAVES (NCERT)

274455 A travelling harmonic wave is represented by the equation $y\left( x,\text{t} \right)={{10}^{-3}}\text{sin}\left( 50\text{t}+2x \right)$, where $x$ and $y$ are in meter and $t$ is in seconds. Which of the following is a correct statement about the wave?

1 The wave is propagating along the negative$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
2 The wave is propagating along the positive$\text{x}$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
3 The wave is propagating along the positive$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
4 The wave is propagating along the negative$x$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
WAVES (NCERT)

274436 A progressive wave travelling along the positive $x$-direction is represented by $y\left( x,t \right)=A\text{sin}\left( kx-\omega t+\phi \right)$. Its snapshot at $t=0$ is given in the figure.
For this wave, the phase $\phi $ is:
12.04.2019 Shift 1 Synergy JEE Mains Nikhil D20

1 $-\frac{\pi }{2}$
2 $\pi $
3 0
4 $\frac{\pi }{2}$
WAVES (NCERT)

274437 The equation $y=A\text{si}{{\text{n}}^{2}}\left( kx-\omega t \right)$ represents a wave with

1 amplitude $\text{A}$, frequency $\omega /2\pi $
2 amplitude $A/2$, frequency $\omega /\pi $
3 amplitude $2\text{A}$, frequency $\omega /4\pi $
4 it does not represent a wave motion
WAVES (NCERT)

274454 Which of the following equations correctly represents a travelling wave having wavelength $\lambda =4.0\text{cm}$, frequency $\text{v}=100\text{Hz}$ and travelling in positive $\text{x}$-axis direction?

1 $y=A\text{sin}\left[ \left( 0.50\pi \text{c}{{\text{m}}^{-1}} \right)x-\left( 100\pi {{\text{s}}^{-1}} \right)t \right]$
2 $y=A\text{sin}2\pi \left[ \left( 0.25\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( 50{{\text{s}}^{-1}} \right)\text{t} \right]$
3 $y=A\text{sin}\left[ \left( \frac{2\pi }{4}\text{c}{{\text{m}}^{-1}} \right)\text{x}-\left( \frac{2\pi }{100}{{\text{s}}^{-1}} \right)\text{t} \right]$
4 $y=A\text{sin}\pi \left[ \left( 0.5\text{c}{{\text{m}}^{-1}} \right)x-\left( 200{{\text{s}}^{-1}} \right)t \right]$
WAVES (NCERT)

274455 A travelling harmonic wave is represented by the equation $y\left( x,\text{t} \right)={{10}^{-3}}\text{sin}\left( 50\text{t}+2x \right)$, where $x$ and $y$ are in meter and $t$ is in seconds. Which of the following is a correct statement about the wave?

1 The wave is propagating along the negative$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
2 The wave is propagating along the positive$\text{x}$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
3 The wave is propagating along the positive$x$-axis with speed $25\text{m}{{\text{s}}^{-1}}$.
4 The wave is propagating along the negative$x$-axis with speed $100\text{m}{{\text{s}}^{-1}}$.
WAVES (NCERT)

274436 A progressive wave travelling along the positive $x$-direction is represented by $y\left( x,t \right)=A\text{sin}\left( kx-\omega t+\phi \right)$. Its snapshot at $t=0$ is given in the figure.
For this wave, the phase $\phi $ is:
12.04.2019 Shift 1 Synergy JEE Mains Nikhil D20

1 $-\frac{\pi }{2}$
2 $\pi $
3 0
4 $\frac{\pi }{2}$
WAVES (NCERT)

274437 The equation $y=A\text{si}{{\text{n}}^{2}}\left( kx-\omega t \right)$ represents a wave with

1 amplitude $\text{A}$, frequency $\omega /2\pi $
2 amplitude $A/2$, frequency $\omega /\pi $
3 amplitude $2\text{A}$, frequency $\omega /4\pi $
4 it does not represent a wave motion