ENERGY OF ORBITING SATELLITES
Gravitation

270530 Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is

1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Gravitation

270531 The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is

1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Gravitation

270583 The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is

1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Gravitation

270584 Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is

1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Gravitation

270530 Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is

1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Gravitation

270531 The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is

1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Gravitation

270583 The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is

1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Gravitation

270584 Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is

1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Gravitation

270530 Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is

1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Gravitation

270531 The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is

1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Gravitation

270583 The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is

1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Gravitation

270584 Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is

1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Gravitation

270530 Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is

1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Gravitation

270531 The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is

1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Gravitation

270583 The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is

1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Gravitation

270584 Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is

1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)