270530
Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is
1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Explanation:
\(K E=\frac{G M m}{2 r} \Rightarrow K E \propto \frac{m}{r} \Rightarrow m \propto r\)
Gravitation
270531
The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is
1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Explanation:
\(\quad K E=\frac{1}{2} m V_{e}^{2} ;\)
Gravitation
270583
The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is
1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Explanation:
P.E. \(=-2(\) K.E. \()\)
Gravitation
270584
Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is
1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Explanation:
\(\quad W=\left(U_{2}-U_{1}\right) \Rightarrow U=-\frac{G M m}{2 r} ; \quad\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Gravitation
270530
Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is
1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Explanation:
\(K E=\frac{G M m}{2 r} \Rightarrow K E \propto \frac{m}{r} \Rightarrow m \propto r\)
Gravitation
270531
The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is
1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Explanation:
\(\quad K E=\frac{1}{2} m V_{e}^{2} ;\)
Gravitation
270583
The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is
1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Explanation:
P.E. \(=-2(\) K.E. \()\)
Gravitation
270584
Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is
1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Explanation:
\(\quad W=\left(U_{2}-U_{1}\right) \Rightarrow U=-\frac{G M m}{2 r} ; \quad\)
270530
Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is
1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Explanation:
\(K E=\frac{G M m}{2 r} \Rightarrow K E \propto \frac{m}{r} \Rightarrow m \propto r\)
Gravitation
270531
The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is
1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Explanation:
\(\quad K E=\frac{1}{2} m V_{e}^{2} ;\)
Gravitation
270583
The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is
1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Explanation:
P.E. \(=-2(\) K.E. \()\)
Gravitation
270584
Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is
1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Explanation:
\(\quad W=\left(U_{2}-U_{1}\right) \Rightarrow U=-\frac{G M m}{2 r} ; \quad\)
270530
Two satellites of masses \(400 \mathrm{~kg}, 500 \mathrm{~kg}\) are revolving around earth in different circular orbits of radii \(r_{1}, r_{2}\) such that their kinetic energies are equal. The ratio of \(r_{1}\) to \(r_{2}\) is
1 \(4: 5\)
2 \(16: 25\)
3 \(5: 4\)
4 \(25: 16\)
Explanation:
\(K E=\frac{G M m}{2 r} \Rightarrow K E \propto \frac{m}{r} \Rightarrow m \propto r\)
Gravitation
270531
The kinetic energy needed to project a body of mass \(m\) from earth's surface (radius \(R\) ) to infinity is
1 \(\frac{m g R}{2}\)
2 \(2 m g R\)
3 \(m g R\)
4 \(\frac{m g R}{4}\)
Explanation:
\(\quad K E=\frac{1}{2} m V_{e}^{2} ;\)
Gravitation
270583
The K.E. of a satellite is \(10^{4} \mathrm{~J}\). Its P.E. is
1 \(-10^{4} \mathrm{~J}\)
2 \(2 \times 10^{4} \mathrm{~J}\)
3 \(-2 \times 10^{4} \mathrm{~J}\)
4 \(-4 \times 10^{4} \mathrm{~J}\)
Explanation:
P.E. \(=-2(\) K.E. \()\)
Gravitation
270584
Energy required to move a body of mass ' \(m\) ' from an orbit of radius \(3 R\) to \(4 R\) is
1 \(\frac{G M m}{2 R}\)
2 \(\frac{G M m}{6 R}\)
3 \(\frac{G M m}{12 R}\)
4 \(\frac{G M m}{24 R}\)
Explanation:
\(\quad W=\left(U_{2}-U_{1}\right) \Rightarrow U=-\frac{G M m}{2 r} ; \quad\)