TO CHECK THE CORRECTNESS OF PHYSICAL RELATIONAND DERIVING THE EQUATIONS
Units and Measurements

269159 If force \(F\), Length \(L\) and time \(T\) are chosen as fundamental quantities, the dimensional formula for \(M\) ass is

1 \([F L T]\)
2 \(\left[F^{-1} L^{-1-1-2]}\right]\)
3 \(\left[F^{-2} L^{-2} T^{-2}\right]\)
4 \(\left[F^{\left.1 L^{-1} T^{-1}\right]}\right.\)
Units and Measurements

269222 Iftheabsoluteerrors in two physical quantities \(A\) and \(B\) are \(a\) and \(b\) respectively, then the absoluteerror in thevalue of \(A-B\) is(M ed- 2014)

1 \(a-b\)
2 b-a
3 \(a \pm b\)
4 \(a+b\)
Units and Measurements

269213 The velocity of a body is expressed as\(\mathbf{V}=G^{a} M^{b} R^{c}\) where \(\mathbf{G}\) is gravitational constant. \(M\) is mass, \(R\) is radius. The values of exponents \(a, b\) and \(c\) are :

1 \(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\)
2 \(1,1,1\)
3 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
4 \(1,1, \frac{1}{2}\)
Units and Measurements

269214 The velocity of a spherical ball through a viscous liquid is given by\(v=v_{0}\left(1-e^{k t}\right)\), where \(v_{\text {p }}\) is the initial velocity and \(t\) represents time. If k depends on radius of ball ( \(r\) ), coefficient of viscosity ( \(\eta\) ) and mass of the ball (m), then

1 \(\mathrm{k}=\mathrm{mr} / \eta\)
2 \(\mathrm{k}=\eta \mathrm{m} / \mathrm{r}\)
3 \(\mathrm{k}=\mathrm{r} \eta / \mathrm{m}\)
4 \(\mathrm{k}=\mathrm{mr} \eta\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

269159 If force \(F\), Length \(L\) and time \(T\) are chosen as fundamental quantities, the dimensional formula for \(M\) ass is

1 \([F L T]\)
2 \(\left[F^{-1} L^{-1-1-2]}\right]\)
3 \(\left[F^{-2} L^{-2} T^{-2}\right]\)
4 \(\left[F^{\left.1 L^{-1} T^{-1}\right]}\right.\)
Units and Measurements

269222 Iftheabsoluteerrors in two physical quantities \(A\) and \(B\) are \(a\) and \(b\) respectively, then the absoluteerror in thevalue of \(A-B\) is(M ed- 2014)

1 \(a-b\)
2 b-a
3 \(a \pm b\)
4 \(a+b\)
Units and Measurements

269213 The velocity of a body is expressed as\(\mathbf{V}=G^{a} M^{b} R^{c}\) where \(\mathbf{G}\) is gravitational constant. \(M\) is mass, \(R\) is radius. The values of exponents \(a, b\) and \(c\) are :

1 \(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\)
2 \(1,1,1\)
3 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
4 \(1,1, \frac{1}{2}\)
Units and Measurements

269214 The velocity of a spherical ball through a viscous liquid is given by\(v=v_{0}\left(1-e^{k t}\right)\), where \(v_{\text {p }}\) is the initial velocity and \(t\) represents time. If k depends on radius of ball ( \(r\) ), coefficient of viscosity ( \(\eta\) ) and mass of the ball (m), then

1 \(\mathrm{k}=\mathrm{mr} / \eta\)
2 \(\mathrm{k}=\eta \mathrm{m} / \mathrm{r}\)
3 \(\mathrm{k}=\mathrm{r} \eta / \mathrm{m}\)
4 \(\mathrm{k}=\mathrm{mr} \eta\)
Units and Measurements

269159 If force \(F\), Length \(L\) and time \(T\) are chosen as fundamental quantities, the dimensional formula for \(M\) ass is

1 \([F L T]\)
2 \(\left[F^{-1} L^{-1-1-2]}\right]\)
3 \(\left[F^{-2} L^{-2} T^{-2}\right]\)
4 \(\left[F^{\left.1 L^{-1} T^{-1}\right]}\right.\)
Units and Measurements

269222 Iftheabsoluteerrors in two physical quantities \(A\) and \(B\) are \(a\) and \(b\) respectively, then the absoluteerror in thevalue of \(A-B\) is(M ed- 2014)

1 \(a-b\)
2 b-a
3 \(a \pm b\)
4 \(a+b\)
Units and Measurements

269213 The velocity of a body is expressed as\(\mathbf{V}=G^{a} M^{b} R^{c}\) where \(\mathbf{G}\) is gravitational constant. \(M\) is mass, \(R\) is radius. The values of exponents \(a, b\) and \(c\) are :

1 \(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\)
2 \(1,1,1\)
3 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
4 \(1,1, \frac{1}{2}\)
Units and Measurements

269214 The velocity of a spherical ball through a viscous liquid is given by\(v=v_{0}\left(1-e^{k t}\right)\), where \(v_{\text {p }}\) is the initial velocity and \(t\) represents time. If k depends on radius of ball ( \(r\) ), coefficient of viscosity ( \(\eta\) ) and mass of the ball (m), then

1 \(\mathrm{k}=\mathrm{mr} / \eta\)
2 \(\mathrm{k}=\eta \mathrm{m} / \mathrm{r}\)
3 \(\mathrm{k}=\mathrm{r} \eta / \mathrm{m}\)
4 \(\mathrm{k}=\mathrm{mr} \eta\)
Units and Measurements

269159 If force \(F\), Length \(L\) and time \(T\) are chosen as fundamental quantities, the dimensional formula for \(M\) ass is

1 \([F L T]\)
2 \(\left[F^{-1} L^{-1-1-2]}\right]\)
3 \(\left[F^{-2} L^{-2} T^{-2}\right]\)
4 \(\left[F^{\left.1 L^{-1} T^{-1}\right]}\right.\)
Units and Measurements

269222 Iftheabsoluteerrors in two physical quantities \(A\) and \(B\) are \(a\) and \(b\) respectively, then the absoluteerror in thevalue of \(A-B\) is(M ed- 2014)

1 \(a-b\)
2 b-a
3 \(a \pm b\)
4 \(a+b\)
Units and Measurements

269213 The velocity of a body is expressed as\(\mathbf{V}=G^{a} M^{b} R^{c}\) where \(\mathbf{G}\) is gravitational constant. \(M\) is mass, \(R\) is radius. The values of exponents \(a, b\) and \(c\) are :

1 \(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\)
2 \(1,1,1\)
3 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
4 \(1,1, \frac{1}{2}\)
Units and Measurements

269214 The velocity of a spherical ball through a viscous liquid is given by\(v=v_{0}\left(1-e^{k t}\right)\), where \(v_{\text {p }}\) is the initial velocity and \(t\) represents time. If k depends on radius of ball ( \(r\) ), coefficient of viscosity ( \(\eta\) ) and mass of the ball (m), then

1 \(\mathrm{k}=\mathrm{mr} / \eta\)
2 \(\mathrm{k}=\eta \mathrm{m} / \mathrm{r}\)
3 \(\mathrm{k}=\mathrm{r} \eta / \mathrm{m}\)
4 \(\mathrm{k}=\mathrm{mr} \eta\)