ACCURACY,PRECISION,TYPESOF ERRORSAND COM BINATION OF ERRORS
Units and Measurements

269160 The Accuracy of a clock is one part in\(10^{10}\). The maximum difference between two such clocks operating for \(10^{10}\) seconds is

1 \(1 \mathrm{~s}\)
2 \(5 \mathrm{~s}\)
3 \(10 \mathrm{~s}\)
4 \(10^{10} \mathrm{~s}\)
Units and Measurements

269161 The length of a rod is measured as\(35.3 \mathrm{~cm}\) then the graduations on the scale are up to

1 \(1 \mathrm{~cm}\)
2 \(1 \mathrm{~mm}\)
3 \(0.01 \mathrm{~mm}\)
4 \(0.1 \mathrm{~mm}\)
Units and Measurements

269162 If\(L=2.06 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\), \(B=1.11 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\), then \(\mathbf{L}+\boldsymbol{B}\) equals to

1 \(3.17 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\),
2 \(2.06 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\)
3 \(3.17 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\),
4 \(3.17 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\),
Units and Measurements

269163 The radius of sphere is measured as\((5.2 \pm 0.2) \mathrm{cm}\) then the percentage error in volume of the ball is

1 \(11 \%\)
2 \(4 \%\)
3 \(7 \%\)
4 \(9 \%\)
Units and Measurements

269160 The Accuracy of a clock is one part in\(10^{10}\). The maximum difference between two such clocks operating for \(10^{10}\) seconds is

1 \(1 \mathrm{~s}\)
2 \(5 \mathrm{~s}\)
3 \(10 \mathrm{~s}\)
4 \(10^{10} \mathrm{~s}\)
Units and Measurements

269161 The length of a rod is measured as\(35.3 \mathrm{~cm}\) then the graduations on the scale are up to

1 \(1 \mathrm{~cm}\)
2 \(1 \mathrm{~mm}\)
3 \(0.01 \mathrm{~mm}\)
4 \(0.1 \mathrm{~mm}\)
Units and Measurements

269162 If\(L=2.06 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\), \(B=1.11 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\), then \(\mathbf{L}+\boldsymbol{B}\) equals to

1 \(3.17 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\),
2 \(2.06 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\)
3 \(3.17 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\),
4 \(3.17 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\),
Units and Measurements

269163 The radius of sphere is measured as\((5.2 \pm 0.2) \mathrm{cm}\) then the percentage error in volume of the ball is

1 \(11 \%\)
2 \(4 \%\)
3 \(7 \%\)
4 \(9 \%\)
Units and Measurements

269160 The Accuracy of a clock is one part in\(10^{10}\). The maximum difference between two such clocks operating for \(10^{10}\) seconds is

1 \(1 \mathrm{~s}\)
2 \(5 \mathrm{~s}\)
3 \(10 \mathrm{~s}\)
4 \(10^{10} \mathrm{~s}\)
Units and Measurements

269161 The length of a rod is measured as\(35.3 \mathrm{~cm}\) then the graduations on the scale are up to

1 \(1 \mathrm{~cm}\)
2 \(1 \mathrm{~mm}\)
3 \(0.01 \mathrm{~mm}\)
4 \(0.1 \mathrm{~mm}\)
Units and Measurements

269162 If\(L=2.06 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\), \(B=1.11 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\), then \(\mathbf{L}+\boldsymbol{B}\) equals to

1 \(3.17 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\),
2 \(2.06 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\)
3 \(3.17 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\),
4 \(3.17 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\),
Units and Measurements

269163 The radius of sphere is measured as\((5.2 \pm 0.2) \mathrm{cm}\) then the percentage error in volume of the ball is

1 \(11 \%\)
2 \(4 \%\)
3 \(7 \%\)
4 \(9 \%\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

269160 The Accuracy of a clock is one part in\(10^{10}\). The maximum difference between two such clocks operating for \(10^{10}\) seconds is

1 \(1 \mathrm{~s}\)
2 \(5 \mathrm{~s}\)
3 \(10 \mathrm{~s}\)
4 \(10^{10} \mathrm{~s}\)
Units and Measurements

269161 The length of a rod is measured as\(35.3 \mathrm{~cm}\) then the graduations on the scale are up to

1 \(1 \mathrm{~cm}\)
2 \(1 \mathrm{~mm}\)
3 \(0.01 \mathrm{~mm}\)
4 \(0.1 \mathrm{~mm}\)
Units and Measurements

269162 If\(L=2.06 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\), \(B=1.11 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\), then \(\mathbf{L}+\boldsymbol{B}\) equals to

1 \(3.17 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\),
2 \(2.06 \mathrm{~cm} \pm 0.05 \mathrm{~cm}\)
3 \(3.17 \mathrm{~cm} \pm 0.02 \mathrm{~cm}\),
4 \(3.17 \mathrm{~cm} \pm 0.03 \mathrm{~cm}\),
Units and Measurements

269163 The radius of sphere is measured as\((5.2 \pm 0.2) \mathrm{cm}\) then the percentage error in volume of the ball is

1 \(11 \%\)
2 \(4 \%\)
3 \(7 \%\)
4 \(9 \%\)