SCALAR PRODUCT (OR) DOT PRODUCT
VECTORS

269008 If \(\vec{A}=(2 \hat{i}+3 \hat{j})\) and \(\vec{B}=(\hat{i}-\hat{j})\) then component of \(\vec{A}\) perpendicular to vector \(\vec{B}\) and in the same plane is

1 \(\frac{5}{2}(\hat{i}+\hat{j})\)
2 \(\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})\)
3 \(\frac{\sqrt{5}}{2}(\hat{i}+\hat{j})\)
4 \(\frac{5}{\sqrt{2}}(\hat{i}+\hat{k})\)
VECTORS

269009 If\(\vec{A}+\vec{B}=\vec{R}\) and \(2 \vec{A}+\vec{B}\) is perpendicular to \(\vec{B}\) then

1 \(A=R\)
2 \(B=2 R\)
3 \(B=R\)
4 \(\mathrm{B}=\mathrm{A}\)
VECTORS

269008 If \(\vec{A}=(2 \hat{i}+3 \hat{j})\) and \(\vec{B}=(\hat{i}-\hat{j})\) then component of \(\vec{A}\) perpendicular to vector \(\vec{B}\) and in the same plane is

1 \(\frac{5}{2}(\hat{i}+\hat{j})\)
2 \(\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})\)
3 \(\frac{\sqrt{5}}{2}(\hat{i}+\hat{j})\)
4 \(\frac{5}{\sqrt{2}}(\hat{i}+\hat{k})\)
VECTORS

269009 If\(\vec{A}+\vec{B}=\vec{R}\) and \(2 \vec{A}+\vec{B}\) is perpendicular to \(\vec{B}\) then

1 \(A=R\)
2 \(B=2 R\)
3 \(B=R\)
4 \(\mathrm{B}=\mathrm{A}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here