269004
If \(\vec{a}\) and \(\vec{b}\) are two unit vector such that \(\vec{a}+2 \vec{b}\) and \(5 \vec{a}-4 \vec{b}\) are perpendicular to each other then the angle between \(\vec{a}\) and \(\vec{b}\) is.
1 \(120^{\circ}\)
2 \(90^{\circ}\)
3 \(60^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\quad \forall \vec{a}+\overrightarrow{2 b}\) H \(\left.^{5} \vec{a}-\overrightarrow{4 b}\right]=0\)
VECTORS
269005
If \(\vec{A}=9 \hat{i}-7 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}-2 \hat{j}-6 \hat{k}\) then the value of \((\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})\) is
269007
The component of \(\vec{A}\) along \(\vec{B}\) is \(\sqrt{3}\) times that of the component of \(\vec{B}\) along \(\vec{A} \cdot\) Then \(A\) : \(B\) is
1 \(1: \sqrt{3}\)
2 \(\sqrt{3}: 1\)
3 \(2: \sqrt{3}\)
4 \(\sqrt{3}: 2\)
Explanation:
\(\quad A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}\) and \(B \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|}\);
\(A \cos \theta=\sqrt{3} B \cos \theta\)
269004
If \(\vec{a}\) and \(\vec{b}\) are two unit vector such that \(\vec{a}+2 \vec{b}\) and \(5 \vec{a}-4 \vec{b}\) are perpendicular to each other then the angle between \(\vec{a}\) and \(\vec{b}\) is.
1 \(120^{\circ}\)
2 \(90^{\circ}\)
3 \(60^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\quad \forall \vec{a}+\overrightarrow{2 b}\) H \(\left.^{5} \vec{a}-\overrightarrow{4 b}\right]=0\)
VECTORS
269005
If \(\vec{A}=9 \hat{i}-7 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}-2 \hat{j}-6 \hat{k}\) then the value of \((\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})\) is
269007
The component of \(\vec{A}\) along \(\vec{B}\) is \(\sqrt{3}\) times that of the component of \(\vec{B}\) along \(\vec{A} \cdot\) Then \(A\) : \(B\) is
1 \(1: \sqrt{3}\)
2 \(\sqrt{3}: 1\)
3 \(2: \sqrt{3}\)
4 \(\sqrt{3}: 2\)
Explanation:
\(\quad A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}\) and \(B \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|}\);
\(A \cos \theta=\sqrt{3} B \cos \theta\)
269004
If \(\vec{a}\) and \(\vec{b}\) are two unit vector such that \(\vec{a}+2 \vec{b}\) and \(5 \vec{a}-4 \vec{b}\) are perpendicular to each other then the angle between \(\vec{a}\) and \(\vec{b}\) is.
1 \(120^{\circ}\)
2 \(90^{\circ}\)
3 \(60^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\quad \forall \vec{a}+\overrightarrow{2 b}\) H \(\left.^{5} \vec{a}-\overrightarrow{4 b}\right]=0\)
VECTORS
269005
If \(\vec{A}=9 \hat{i}-7 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}-2 \hat{j}-6 \hat{k}\) then the value of \((\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})\) is
269007
The component of \(\vec{A}\) along \(\vec{B}\) is \(\sqrt{3}\) times that of the component of \(\vec{B}\) along \(\vec{A} \cdot\) Then \(A\) : \(B\) is
1 \(1: \sqrt{3}\)
2 \(\sqrt{3}: 1\)
3 \(2: \sqrt{3}\)
4 \(\sqrt{3}: 2\)
Explanation:
\(\quad A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}\) and \(B \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|}\);
\(A \cos \theta=\sqrt{3} B \cos \theta\)
269004
If \(\vec{a}\) and \(\vec{b}\) are two unit vector such that \(\vec{a}+2 \vec{b}\) and \(5 \vec{a}-4 \vec{b}\) are perpendicular to each other then the angle between \(\vec{a}\) and \(\vec{b}\) is.
1 \(120^{\circ}\)
2 \(90^{\circ}\)
3 \(60^{\circ}\)
4 \(45^{\circ}\)
Explanation:
\(\quad \forall \vec{a}+\overrightarrow{2 b}\) H \(\left.^{5} \vec{a}-\overrightarrow{4 b}\right]=0\)
VECTORS
269005
If \(\vec{A}=9 \hat{i}-7 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}-2 \hat{j}-6 \hat{k}\) then the value of \((\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})\) is
269007
The component of \(\vec{A}\) along \(\vec{B}\) is \(\sqrt{3}\) times that of the component of \(\vec{B}\) along \(\vec{A} \cdot\) Then \(A\) : \(B\) is
1 \(1: \sqrt{3}\)
2 \(\sqrt{3}: 1\)
3 \(2: \sqrt{3}\)
4 \(\sqrt{3}: 2\)
Explanation:
\(\quad A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}\) and \(B \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|}\);
\(A \cos \theta=\sqrt{3} B \cos \theta\)