268995
Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are \(\vec{v}=2 \hat{i}+c \hat{j}\) and \(\vec{a}=3 \hat{i}+4 \hat{j}\) respectively. Then the value of ' \(c\) ' is
1 3
2 1.5
3 -1.5
4 -3
Explanation:
\(\vec{v} \cdot \vec{a}=0\)
VECTORS
268996
Dot product is used in the determination of
a) Work done by a force
b) Power developed by an automobile moving with uniform velocity.
c) The normal flux linked with a coil kept in magnetic field.
d) The force acting on a conductor carrying current kept in a magnetic field.
1 \(a\), d aretrue
2 \(b\), d are true
3 \(a, b, c\) aretrue
4 \(a, c\) are true
Explanation:
a) \(W=\vec{F} . \overrightarrow{;} ;\) b) \(P=\vec{F} . \vec{v} \quad c) \varphi=\vec{B} \cdot \vec{A} ; b) \vec{F}=i d \vec{l} \times \vec{B}\)
VECTORS
269003
A force\(\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k} N\) acting on a particle causes a displacement \(\vec{S}=-4 \hat{i}+2 \hat{j}-3 \hat{k} \mathrm{~m}\). If the workdone is 6 joule, the value of \(\mathbf{c}\) is
1 0
2 1
3 12
4 6
Explanation:
\(\quad W=\vec{F} \cdot \vec{S}\)
VECTORS
268989
If \(\vec{V}=3 \hat{i}+4 \hat{j}\) then, with what scalar ' \(C\) ' must it be multiplied so that \(\lvert c \vee\lvert=7.5\)
1 0.5
2 2.5
3 1.5
4 3.5
Explanation:
\(\lvert\vec{V}|=\sqrt{3^{2}+4^{2}}=5 ; C V=7.5 \Rightarrow C=\frac{7.5}{5}=\frac{3}{2}\)
268995
Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are \(\vec{v}=2 \hat{i}+c \hat{j}\) and \(\vec{a}=3 \hat{i}+4 \hat{j}\) respectively. Then the value of ' \(c\) ' is
1 3
2 1.5
3 -1.5
4 -3
Explanation:
\(\vec{v} \cdot \vec{a}=0\)
VECTORS
268996
Dot product is used in the determination of
a) Work done by a force
b) Power developed by an automobile moving with uniform velocity.
c) The normal flux linked with a coil kept in magnetic field.
d) The force acting on a conductor carrying current kept in a magnetic field.
1 \(a\), d aretrue
2 \(b\), d are true
3 \(a, b, c\) aretrue
4 \(a, c\) are true
Explanation:
a) \(W=\vec{F} . \overrightarrow{;} ;\) b) \(P=\vec{F} . \vec{v} \quad c) \varphi=\vec{B} \cdot \vec{A} ; b) \vec{F}=i d \vec{l} \times \vec{B}\)
VECTORS
269003
A force\(\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k} N\) acting on a particle causes a displacement \(\vec{S}=-4 \hat{i}+2 \hat{j}-3 \hat{k} \mathrm{~m}\). If the workdone is 6 joule, the value of \(\mathbf{c}\) is
1 0
2 1
3 12
4 6
Explanation:
\(\quad W=\vec{F} \cdot \vec{S}\)
VECTORS
268989
If \(\vec{V}=3 \hat{i}+4 \hat{j}\) then, with what scalar ' \(C\) ' must it be multiplied so that \(\lvert c \vee\lvert=7.5\)
1 0.5
2 2.5
3 1.5
4 3.5
Explanation:
\(\lvert\vec{V}|=\sqrt{3^{2}+4^{2}}=5 ; C V=7.5 \Rightarrow C=\frac{7.5}{5}=\frac{3}{2}\)
268995
Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are \(\vec{v}=2 \hat{i}+c \hat{j}\) and \(\vec{a}=3 \hat{i}+4 \hat{j}\) respectively. Then the value of ' \(c\) ' is
1 3
2 1.5
3 -1.5
4 -3
Explanation:
\(\vec{v} \cdot \vec{a}=0\)
VECTORS
268996
Dot product is used in the determination of
a) Work done by a force
b) Power developed by an automobile moving with uniform velocity.
c) The normal flux linked with a coil kept in magnetic field.
d) The force acting on a conductor carrying current kept in a magnetic field.
1 \(a\), d aretrue
2 \(b\), d are true
3 \(a, b, c\) aretrue
4 \(a, c\) are true
Explanation:
a) \(W=\vec{F} . \overrightarrow{;} ;\) b) \(P=\vec{F} . \vec{v} \quad c) \varphi=\vec{B} \cdot \vec{A} ; b) \vec{F}=i d \vec{l} \times \vec{B}\)
VECTORS
269003
A force\(\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k} N\) acting on a particle causes a displacement \(\vec{S}=-4 \hat{i}+2 \hat{j}-3 \hat{k} \mathrm{~m}\). If the workdone is 6 joule, the value of \(\mathbf{c}\) is
1 0
2 1
3 12
4 6
Explanation:
\(\quad W=\vec{F} \cdot \vec{S}\)
VECTORS
268989
If \(\vec{V}=3 \hat{i}+4 \hat{j}\) then, with what scalar ' \(C\) ' must it be multiplied so that \(\lvert c \vee\lvert=7.5\)
1 0.5
2 2.5
3 1.5
4 3.5
Explanation:
\(\lvert\vec{V}|=\sqrt{3^{2}+4^{2}}=5 ; C V=7.5 \Rightarrow C=\frac{7.5}{5}=\frac{3}{2}\)
268995
Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are \(\vec{v}=2 \hat{i}+c \hat{j}\) and \(\vec{a}=3 \hat{i}+4 \hat{j}\) respectively. Then the value of ' \(c\) ' is
1 3
2 1.5
3 -1.5
4 -3
Explanation:
\(\vec{v} \cdot \vec{a}=0\)
VECTORS
268996
Dot product is used in the determination of
a) Work done by a force
b) Power developed by an automobile moving with uniform velocity.
c) The normal flux linked with a coil kept in magnetic field.
d) The force acting on a conductor carrying current kept in a magnetic field.
1 \(a\), d aretrue
2 \(b\), d are true
3 \(a, b, c\) aretrue
4 \(a, c\) are true
Explanation:
a) \(W=\vec{F} . \overrightarrow{;} ;\) b) \(P=\vec{F} . \vec{v} \quad c) \varphi=\vec{B} \cdot \vec{A} ; b) \vec{F}=i d \vec{l} \times \vec{B}\)
VECTORS
269003
A force\(\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k} N\) acting on a particle causes a displacement \(\vec{S}=-4 \hat{i}+2 \hat{j}-3 \hat{k} \mathrm{~m}\). If the workdone is 6 joule, the value of \(\mathbf{c}\) is
1 0
2 1
3 12
4 6
Explanation:
\(\quad W=\vec{F} \cdot \vec{S}\)
VECTORS
268989
If \(\vec{V}=3 \hat{i}+4 \hat{j}\) then, with what scalar ' \(C\) ' must it be multiplied so that \(\lvert c \vee\lvert=7.5\)
1 0.5
2 2.5
3 1.5
4 3.5
Explanation:
\(\lvert\vec{V}|=\sqrt{3^{2}+4^{2}}=5 ; C V=7.5 \Rightarrow C=\frac{7.5}{5}=\frac{3}{2}\)