268960
A bird moves in such a way that it has a displacement of \(12 \mathrm{~m}\) towards east, \(5 \mathrm{~m}\) towards north and \(9 \mathrm{~m}\) vertically upwards. Find the magnitude of its displacement
1 \(5 \sqrt{2} m\)
2 \(5 \sqrt{10} \mathrm{~m}\)
3 \(5 \sqrt{5} \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Explanation:
\(S=\sqrt{x^{2}+y^{2}+z^{2}}\)
VECTORS
268961
An aeroplane is heading north east at a speed of \(141.4 \mathrm{~ms}^{-1}\). The northward component of its velocity is
1 \(141.4 \mathrm{~ms}^{-1}\)
2 \(100 \mathrm{~ms}^{-1}\)
3 \(zero\)
4 \(50 \mathrm{~ms}^{-1}\)
Explanation:
\(\quad 141.4 \sin 45^{\circ}\)
VECTORS
268962
The unit vector parallel to the resultant of the vectors \(\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}\) is
268963
The vector parallel to \(4 \hat{i}-3 \hat{j}+5 \hat{k}\) and whose length is the arithmetic mean of lengths of two vectors \(2 \hat{i}-4 \hat{j}+4 \hat{k}\) and \(\hat{i}+\sqrt{6} \hat{j}+3 \hat{k}\) is
1 \(4 \hat{i}-3 \hat{j}+5 \hat{k}\)
2 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{3}\)
3 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{2}\)
4 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{5}\)
Explanation:
\(\quad K=\frac{|\vec{B}|+|\vec{C}|}{2}\) and \(\vec{D}=K \frac{\vec{A}}{|\vec{A}|}\)
268960
A bird moves in such a way that it has a displacement of \(12 \mathrm{~m}\) towards east, \(5 \mathrm{~m}\) towards north and \(9 \mathrm{~m}\) vertically upwards. Find the magnitude of its displacement
1 \(5 \sqrt{2} m\)
2 \(5 \sqrt{10} \mathrm{~m}\)
3 \(5 \sqrt{5} \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Explanation:
\(S=\sqrt{x^{2}+y^{2}+z^{2}}\)
VECTORS
268961
An aeroplane is heading north east at a speed of \(141.4 \mathrm{~ms}^{-1}\). The northward component of its velocity is
1 \(141.4 \mathrm{~ms}^{-1}\)
2 \(100 \mathrm{~ms}^{-1}\)
3 \(zero\)
4 \(50 \mathrm{~ms}^{-1}\)
Explanation:
\(\quad 141.4 \sin 45^{\circ}\)
VECTORS
268962
The unit vector parallel to the resultant of the vectors \(\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}\) is
268963
The vector parallel to \(4 \hat{i}-3 \hat{j}+5 \hat{k}\) and whose length is the arithmetic mean of lengths of two vectors \(2 \hat{i}-4 \hat{j}+4 \hat{k}\) and \(\hat{i}+\sqrt{6} \hat{j}+3 \hat{k}\) is
1 \(4 \hat{i}-3 \hat{j}+5 \hat{k}\)
2 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{3}\)
3 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{2}\)
4 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{5}\)
Explanation:
\(\quad K=\frac{|\vec{B}|+|\vec{C}|}{2}\) and \(\vec{D}=K \frac{\vec{A}}{|\vec{A}|}\)
268960
A bird moves in such a way that it has a displacement of \(12 \mathrm{~m}\) towards east, \(5 \mathrm{~m}\) towards north and \(9 \mathrm{~m}\) vertically upwards. Find the magnitude of its displacement
1 \(5 \sqrt{2} m\)
2 \(5 \sqrt{10} \mathrm{~m}\)
3 \(5 \sqrt{5} \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Explanation:
\(S=\sqrt{x^{2}+y^{2}+z^{2}}\)
VECTORS
268961
An aeroplane is heading north east at a speed of \(141.4 \mathrm{~ms}^{-1}\). The northward component of its velocity is
1 \(141.4 \mathrm{~ms}^{-1}\)
2 \(100 \mathrm{~ms}^{-1}\)
3 \(zero\)
4 \(50 \mathrm{~ms}^{-1}\)
Explanation:
\(\quad 141.4 \sin 45^{\circ}\)
VECTORS
268962
The unit vector parallel to the resultant of the vectors \(\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}\) is
268963
The vector parallel to \(4 \hat{i}-3 \hat{j}+5 \hat{k}\) and whose length is the arithmetic mean of lengths of two vectors \(2 \hat{i}-4 \hat{j}+4 \hat{k}\) and \(\hat{i}+\sqrt{6} \hat{j}+3 \hat{k}\) is
1 \(4 \hat{i}-3 \hat{j}+5 \hat{k}\)
2 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{3}\)
3 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{2}\)
4 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{5}\)
Explanation:
\(\quad K=\frac{|\vec{B}|+|\vec{C}|}{2}\) and \(\vec{D}=K \frac{\vec{A}}{|\vec{A}|}\)
268960
A bird moves in such a way that it has a displacement of \(12 \mathrm{~m}\) towards east, \(5 \mathrm{~m}\) towards north and \(9 \mathrm{~m}\) vertically upwards. Find the magnitude of its displacement
1 \(5 \sqrt{2} m\)
2 \(5 \sqrt{10} \mathrm{~m}\)
3 \(5 \sqrt{5} \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Explanation:
\(S=\sqrt{x^{2}+y^{2}+z^{2}}\)
VECTORS
268961
An aeroplane is heading north east at a speed of \(141.4 \mathrm{~ms}^{-1}\). The northward component of its velocity is
1 \(141.4 \mathrm{~ms}^{-1}\)
2 \(100 \mathrm{~ms}^{-1}\)
3 \(zero\)
4 \(50 \mathrm{~ms}^{-1}\)
Explanation:
\(\quad 141.4 \sin 45^{\circ}\)
VECTORS
268962
The unit vector parallel to the resultant of the vectors \(\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}\) is
268963
The vector parallel to \(4 \hat{i}-3 \hat{j}+5 \hat{k}\) and whose length is the arithmetic mean of lengths of two vectors \(2 \hat{i}-4 \hat{j}+4 \hat{k}\) and \(\hat{i}+\sqrt{6} \hat{j}+3 \hat{k}\) is
1 \(4 \hat{i}-3 \hat{j}+5 \hat{k}\)
2 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{3}\)
3 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{2}\)
4 \((4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{5}\)
Explanation:
\(\quad K=\frac{|\vec{B}|+|\vec{C}|}{2}\) and \(\vec{D}=K \frac{\vec{A}}{|\vec{A}|}\)