PREVIOUS EAMCET QUESTIONS
Work, Energy and Power

268805 A body is thrown vertically upward from a point '\(A\) ' \(125 \mathrm{~m}\) above the ground. It goes up to a maximum height of \(250 \mathrm{~m}\) above the ground and passes through ' \(A\) ' on its downward journey. The velocity of the body when it is at a height of \(70 \mathrm{~m}\) above the ground is \(\left(g=10 \mathbf{~ m s}^{-2}\right)\)

1 \(50 \mathrm{~ms}^{-1}\)
2 \(60 \mathrm{~ms}^{-1}\)
3 \(80 \mathrm{~ms}^{-1}\)
4 (2013 M)
Work, Energy and Power

268806 A body of mass\(300 \mathrm{~kg}\) is moved through \(10 \mathrm{~m}\) along a smooth inclined plane of inclination angle \(30^{\circ}\). The work done in moving (in joules) is \(\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)\)

1 4900
2 9800
3 14,700
4 2450
Work, Energy and Power

268807 A ball of mass ' \(m\) ' moving with a horizontal velocity ' \(v\) ' strikes the bob of mass ' \(m\) ' of a pendulum at rest. During this collision, the ball sticks with the bob of the pendulum. The height to which the combined mass raises is( \(g\) = acceleration due to gravity) (2013 M)

1 \(\frac{v^{2}}{4 g}\)
2 \(\frac{v^{2}}{8 g}\)
3 \(\frac{v^{2}}{g}\)
4 \(\frac{v^{2}}{2 g}\)
Work, Energy and Power

268808 The velocity ' \(v\) ' reached by a car of mass ' \(m\) ' on moving a certain distance from the starting point when driven by a motor with constant power ' \(P\) ' is such that ( \(2012 \mathrm{E}\) )

1 \(v \propto \frac{3 P}{m}\)
2 \(v^{2} \propto \frac{3 P}{m}\)
3 \(v^{3} \propto \frac{3 P}{m}\)
4 \(v \propto \square \frac{3 P}{m} \overbrace{}^{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

268805 A body is thrown vertically upward from a point '\(A\) ' \(125 \mathrm{~m}\) above the ground. It goes up to a maximum height of \(250 \mathrm{~m}\) above the ground and passes through ' \(A\) ' on its downward journey. The velocity of the body when it is at a height of \(70 \mathrm{~m}\) above the ground is \(\left(g=10 \mathbf{~ m s}^{-2}\right)\)

1 \(50 \mathrm{~ms}^{-1}\)
2 \(60 \mathrm{~ms}^{-1}\)
3 \(80 \mathrm{~ms}^{-1}\)
4 (2013 M)
Work, Energy and Power

268806 A body of mass\(300 \mathrm{~kg}\) is moved through \(10 \mathrm{~m}\) along a smooth inclined plane of inclination angle \(30^{\circ}\). The work done in moving (in joules) is \(\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)\)

1 4900
2 9800
3 14,700
4 2450
Work, Energy and Power

268807 A ball of mass ' \(m\) ' moving with a horizontal velocity ' \(v\) ' strikes the bob of mass ' \(m\) ' of a pendulum at rest. During this collision, the ball sticks with the bob of the pendulum. The height to which the combined mass raises is( \(g\) = acceleration due to gravity) (2013 M)

1 \(\frac{v^{2}}{4 g}\)
2 \(\frac{v^{2}}{8 g}\)
3 \(\frac{v^{2}}{g}\)
4 \(\frac{v^{2}}{2 g}\)
Work, Energy and Power

268808 The velocity ' \(v\) ' reached by a car of mass ' \(m\) ' on moving a certain distance from the starting point when driven by a motor with constant power ' \(P\) ' is such that ( \(2012 \mathrm{E}\) )

1 \(v \propto \frac{3 P}{m}\)
2 \(v^{2} \propto \frac{3 P}{m}\)
3 \(v^{3} \propto \frac{3 P}{m}\)
4 \(v \propto \square \frac{3 P}{m} \overbrace{}^{2}\)
Work, Energy and Power

268805 A body is thrown vertically upward from a point '\(A\) ' \(125 \mathrm{~m}\) above the ground. It goes up to a maximum height of \(250 \mathrm{~m}\) above the ground and passes through ' \(A\) ' on its downward journey. The velocity of the body when it is at a height of \(70 \mathrm{~m}\) above the ground is \(\left(g=10 \mathbf{~ m s}^{-2}\right)\)

1 \(50 \mathrm{~ms}^{-1}\)
2 \(60 \mathrm{~ms}^{-1}\)
3 \(80 \mathrm{~ms}^{-1}\)
4 (2013 M)
Work, Energy and Power

268806 A body of mass\(300 \mathrm{~kg}\) is moved through \(10 \mathrm{~m}\) along a smooth inclined plane of inclination angle \(30^{\circ}\). The work done in moving (in joules) is \(\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)\)

1 4900
2 9800
3 14,700
4 2450
Work, Energy and Power

268807 A ball of mass ' \(m\) ' moving with a horizontal velocity ' \(v\) ' strikes the bob of mass ' \(m\) ' of a pendulum at rest. During this collision, the ball sticks with the bob of the pendulum. The height to which the combined mass raises is( \(g\) = acceleration due to gravity) (2013 M)

1 \(\frac{v^{2}}{4 g}\)
2 \(\frac{v^{2}}{8 g}\)
3 \(\frac{v^{2}}{g}\)
4 \(\frac{v^{2}}{2 g}\)
Work, Energy and Power

268808 The velocity ' \(v\) ' reached by a car of mass ' \(m\) ' on moving a certain distance from the starting point when driven by a motor with constant power ' \(P\) ' is such that ( \(2012 \mathrm{E}\) )

1 \(v \propto \frac{3 P}{m}\)
2 \(v^{2} \propto \frac{3 P}{m}\)
3 \(v^{3} \propto \frac{3 P}{m}\)
4 \(v \propto \square \frac{3 P}{m} \overbrace{}^{2}\)
Work, Energy and Power

268805 A body is thrown vertically upward from a point '\(A\) ' \(125 \mathrm{~m}\) above the ground. It goes up to a maximum height of \(250 \mathrm{~m}\) above the ground and passes through ' \(A\) ' on its downward journey. The velocity of the body when it is at a height of \(70 \mathrm{~m}\) above the ground is \(\left(g=10 \mathbf{~ m s}^{-2}\right)\)

1 \(50 \mathrm{~ms}^{-1}\)
2 \(60 \mathrm{~ms}^{-1}\)
3 \(80 \mathrm{~ms}^{-1}\)
4 (2013 M)
Work, Energy and Power

268806 A body of mass\(300 \mathrm{~kg}\) is moved through \(10 \mathrm{~m}\) along a smooth inclined plane of inclination angle \(30^{\circ}\). The work done in moving (in joules) is \(\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)\)

1 4900
2 9800
3 14,700
4 2450
Work, Energy and Power

268807 A ball of mass ' \(m\) ' moving with a horizontal velocity ' \(v\) ' strikes the bob of mass ' \(m\) ' of a pendulum at rest. During this collision, the ball sticks with the bob of the pendulum. The height to which the combined mass raises is( \(g\) = acceleration due to gravity) (2013 M)

1 \(\frac{v^{2}}{4 g}\)
2 \(\frac{v^{2}}{8 g}\)
3 \(\frac{v^{2}}{g}\)
4 \(\frac{v^{2}}{2 g}\)
Work, Energy and Power

268808 The velocity ' \(v\) ' reached by a car of mass ' \(m\) ' on moving a certain distance from the starting point when driven by a motor with constant power ' \(P\) ' is such that ( \(2012 \mathrm{E}\) )

1 \(v \propto \frac{3 P}{m}\)
2 \(v^{2} \propto \frac{3 P}{m}\)
3 \(v^{3} \propto \frac{3 P}{m}\)
4 \(v \propto \square \frac{3 P}{m} \overbrace{}^{2}\)