COEFFICIENT OF RESTITUTION
Work, Energy and Power

268695 A ball is dropped onto a horizontal floor. It reaches a height of \(144 \mathrm{~cm}\) on the first bounce and \(81 \mathrm{~cm}\) on the second bounce. The height it attains on the third bounce is

1 \(45.6 \mathrm{~cm}\)
2 \(81 \mathrm{~cm}\)
3 \(144 \mathrm{~cm}\)
4 \(0 \mathrm{~cm}\)
Work, Energy and Power

268696 A ball is dropped from height ' \(H\) ' onto a horizontal surface. If the coefficient of restitution is ' \(\mathbf{e}\) ' then the total time after which it comes to rest is

1 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \cdot 1-\mathrm{e}\right]\)
2 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{H}_{1-\mathrm{e}}^{1-\mathrm{e}}\right]\)
3 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1}+\mathrm{e}^{2} \mathrm{-} \mathrm{e}^{2}\)百
4 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1-\mathrm{e}^{2}} \mathrm{e}^{2}\)目
Work, Energy and Power

268697 A stationary body explodes into two fragments of masses \(m_{1}\) and \(m_{2}\). If momentum of one fragment is \(p\), the energy of explosion is

1 \(\frac{p^{2}}{2\left(m_{1}+m_{2}\right)}\)
2 \(\frac{p^{2}}{2 \sqrt{m_{1} m_{2}}}\)
3 \(\frac{p^{2}\left(m_{1}+m_{2}\right)}{2 m_{1} m_{2}}\)
4 \(\frac{p^{2}}{2\left(m_{1}-m_{2}\right)}\)
Work, Energy and Power

268746 A ball falls from a height of \(10 \mathrm{~m}\) on to a horizontal plane. If the coefficient of restitution is 0.4 , then the velocity with which it rebounds from the plane after second collision is

1 \(2.24 \mathrm{~ms}^{-1}\)
2 \(5.6 \mathrm{~ms}^{-1}\)
3 \(2.8 \mathrm{~ms}^{-1}\)
4 \(0.9 \mathrm{~ms}^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

268695 A ball is dropped onto a horizontal floor. It reaches a height of \(144 \mathrm{~cm}\) on the first bounce and \(81 \mathrm{~cm}\) on the second bounce. The height it attains on the third bounce is

1 \(45.6 \mathrm{~cm}\)
2 \(81 \mathrm{~cm}\)
3 \(144 \mathrm{~cm}\)
4 \(0 \mathrm{~cm}\)
Work, Energy and Power

268696 A ball is dropped from height ' \(H\) ' onto a horizontal surface. If the coefficient of restitution is ' \(\mathbf{e}\) ' then the total time after which it comes to rest is

1 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \cdot 1-\mathrm{e}\right]\)
2 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{H}_{1-\mathrm{e}}^{1-\mathrm{e}}\right]\)
3 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1}+\mathrm{e}^{2} \mathrm{-} \mathrm{e}^{2}\)百
4 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1-\mathrm{e}^{2}} \mathrm{e}^{2}\)目
Work, Energy and Power

268697 A stationary body explodes into two fragments of masses \(m_{1}\) and \(m_{2}\). If momentum of one fragment is \(p\), the energy of explosion is

1 \(\frac{p^{2}}{2\left(m_{1}+m_{2}\right)}\)
2 \(\frac{p^{2}}{2 \sqrt{m_{1} m_{2}}}\)
3 \(\frac{p^{2}\left(m_{1}+m_{2}\right)}{2 m_{1} m_{2}}\)
4 \(\frac{p^{2}}{2\left(m_{1}-m_{2}\right)}\)
Work, Energy and Power

268746 A ball falls from a height of \(10 \mathrm{~m}\) on to a horizontal plane. If the coefficient of restitution is 0.4 , then the velocity with which it rebounds from the plane after second collision is

1 \(2.24 \mathrm{~ms}^{-1}\)
2 \(5.6 \mathrm{~ms}^{-1}\)
3 \(2.8 \mathrm{~ms}^{-1}\)
4 \(0.9 \mathrm{~ms}^{-1}\)
Work, Energy and Power

268695 A ball is dropped onto a horizontal floor. It reaches a height of \(144 \mathrm{~cm}\) on the first bounce and \(81 \mathrm{~cm}\) on the second bounce. The height it attains on the third bounce is

1 \(45.6 \mathrm{~cm}\)
2 \(81 \mathrm{~cm}\)
3 \(144 \mathrm{~cm}\)
4 \(0 \mathrm{~cm}\)
Work, Energy and Power

268696 A ball is dropped from height ' \(H\) ' onto a horizontal surface. If the coefficient of restitution is ' \(\mathbf{e}\) ' then the total time after which it comes to rest is

1 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \cdot 1-\mathrm{e}\right]\)
2 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{H}_{1-\mathrm{e}}^{1-\mathrm{e}}\right]\)
3 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1}+\mathrm{e}^{2} \mathrm{-} \mathrm{e}^{2}\)百
4 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1-\mathrm{e}^{2}} \mathrm{e}^{2}\)目
Work, Energy and Power

268697 A stationary body explodes into two fragments of masses \(m_{1}\) and \(m_{2}\). If momentum of one fragment is \(p\), the energy of explosion is

1 \(\frac{p^{2}}{2\left(m_{1}+m_{2}\right)}\)
2 \(\frac{p^{2}}{2 \sqrt{m_{1} m_{2}}}\)
3 \(\frac{p^{2}\left(m_{1}+m_{2}\right)}{2 m_{1} m_{2}}\)
4 \(\frac{p^{2}}{2\left(m_{1}-m_{2}\right)}\)
Work, Energy and Power

268746 A ball falls from a height of \(10 \mathrm{~m}\) on to a horizontal plane. If the coefficient of restitution is 0.4 , then the velocity with which it rebounds from the plane after second collision is

1 \(2.24 \mathrm{~ms}^{-1}\)
2 \(5.6 \mathrm{~ms}^{-1}\)
3 \(2.8 \mathrm{~ms}^{-1}\)
4 \(0.9 \mathrm{~ms}^{-1}\)
Work, Energy and Power

268695 A ball is dropped onto a horizontal floor. It reaches a height of \(144 \mathrm{~cm}\) on the first bounce and \(81 \mathrm{~cm}\) on the second bounce. The height it attains on the third bounce is

1 \(45.6 \mathrm{~cm}\)
2 \(81 \mathrm{~cm}\)
3 \(144 \mathrm{~cm}\)
4 \(0 \mathrm{~cm}\)
Work, Energy and Power

268696 A ball is dropped from height ' \(H\) ' onto a horizontal surface. If the coefficient of restitution is ' \(\mathbf{e}\) ' then the total time after which it comes to rest is

1 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \cdot 1-\mathrm{e}\right]\)
2 \(\left.\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{H}_{1-\mathrm{e}}^{1-\mathrm{e}}\right]\)
3 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1}+\mathrm{e}^{2} \mathrm{-} \mathrm{e}^{2}\)百
4 \(\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \mathrm{O}_{1}^{1-\mathrm{e}^{2}} \mathrm{e}^{2}\)目
Work, Energy and Power

268697 A stationary body explodes into two fragments of masses \(m_{1}\) and \(m_{2}\). If momentum of one fragment is \(p\), the energy of explosion is

1 \(\frac{p^{2}}{2\left(m_{1}+m_{2}\right)}\)
2 \(\frac{p^{2}}{2 \sqrt{m_{1} m_{2}}}\)
3 \(\frac{p^{2}\left(m_{1}+m_{2}\right)}{2 m_{1} m_{2}}\)
4 \(\frac{p^{2}}{2\left(m_{1}-m_{2}\right)}\)
Work, Energy and Power

268746 A ball falls from a height of \(10 \mathrm{~m}\) on to a horizontal plane. If the coefficient of restitution is 0.4 , then the velocity with which it rebounds from the plane after second collision is

1 \(2.24 \mathrm{~ms}^{-1}\)
2 \(5.6 \mathrm{~ms}^{-1}\)
3 \(2.8 \mathrm{~ms}^{-1}\)
4 \(0.9 \mathrm{~ms}^{-1}\)