FST 8
TEST SERIES (PHYSICS FST)

266543 An aeroplane is to go along straight line from \(A\) to \(B\), and back again. The relative speed with respect to wind is \(V\). The wind blows perpendicular to line \(A B\) with speed \(v\). The distance between \(A\) and \(B\) is I. The total time for the round trip is:

1 \(\frac{2 \ell}{\sqrt{V^2-v^2}}\)
2 \(\frac{2 v i}{v^2-v^2}\)
3 \(\frac{2 v}{v^2-v^2}\)
4 \(\frac{2 \ell}{\sqrt{v^2+v^2}}\)
TEST SERIES (PHYSICS FST)

266544 What is the value of linear velocity, if \(\vec{\omega}=3 \hat{i}-4 \hat{j}+2 \hat{k}\) and \(\vec{r}=3 \hat{i}-6 \hat{j}+6 \hat{k}\) ?

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(-12 \hat{i}-12 \hat{j}-6 \hat{k}\)
3 \(4 \hat{i}-13 \hat{j}+6 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
TEST SERIES (PHYSICS FST)

266545 Consider the given acceleration time graph, if initial velocity is \(10 \mathrm{~m} / \mathrm{sec}\), then Find velocity after Esec?

1 \(25 \mathrm{~m} / \mathrm{sec}\)
2 \(15 \mathrm{~m} / \mathrm{sec}\)
3 \(35 \mathrm{~m} / \mathrm{sec}\)
4 \(50 \mathrm{~m} / \mathrm{sec}\)
TEST SERIES (PHYSICS FST)

266546 One end of a massless rope, which passes over a massless and frictionless pulley \(P\) is tied to a hook C while the other end is free. Maximum tension that the rope can bear is 500 N . With what value of minimum safe acceleration (in \(\mathrm{ms}^{-2}\) ) can a monkey of 80 kg move down on the rope:

1 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
2 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
3 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
4 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
TEST SERIES (PHYSICS FST)

266543 An aeroplane is to go along straight line from \(A\) to \(B\), and back again. The relative speed with respect to wind is \(V\). The wind blows perpendicular to line \(A B\) with speed \(v\). The distance between \(A\) and \(B\) is I. The total time for the round trip is:

1 \(\frac{2 \ell}{\sqrt{V^2-v^2}}\)
2 \(\frac{2 v i}{v^2-v^2}\)
3 \(\frac{2 v}{v^2-v^2}\)
4 \(\frac{2 \ell}{\sqrt{v^2+v^2}}\)
TEST SERIES (PHYSICS FST)

266544 What is the value of linear velocity, if \(\vec{\omega}=3 \hat{i}-4 \hat{j}+2 \hat{k}\) and \(\vec{r}=3 \hat{i}-6 \hat{j}+6 \hat{k}\) ?

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(-12 \hat{i}-12 \hat{j}-6 \hat{k}\)
3 \(4 \hat{i}-13 \hat{j}+6 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
TEST SERIES (PHYSICS FST)

266545 Consider the given acceleration time graph, if initial velocity is \(10 \mathrm{~m} / \mathrm{sec}\), then Find velocity after Esec?

1 \(25 \mathrm{~m} / \mathrm{sec}\)
2 \(15 \mathrm{~m} / \mathrm{sec}\)
3 \(35 \mathrm{~m} / \mathrm{sec}\)
4 \(50 \mathrm{~m} / \mathrm{sec}\)
TEST SERIES (PHYSICS FST)

266546 One end of a massless rope, which passes over a massless and frictionless pulley \(P\) is tied to a hook C while the other end is free. Maximum tension that the rope can bear is 500 N . With what value of minimum safe acceleration (in \(\mathrm{ms}^{-2}\) ) can a monkey of 80 kg move down on the rope:

1 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
2 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
3 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
4 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
TEST SERIES (PHYSICS FST)

266543 An aeroplane is to go along straight line from \(A\) to \(B\), and back again. The relative speed with respect to wind is \(V\). The wind blows perpendicular to line \(A B\) with speed \(v\). The distance between \(A\) and \(B\) is I. The total time for the round trip is:

1 \(\frac{2 \ell}{\sqrt{V^2-v^2}}\)
2 \(\frac{2 v i}{v^2-v^2}\)
3 \(\frac{2 v}{v^2-v^2}\)
4 \(\frac{2 \ell}{\sqrt{v^2+v^2}}\)
TEST SERIES (PHYSICS FST)

266544 What is the value of linear velocity, if \(\vec{\omega}=3 \hat{i}-4 \hat{j}+2 \hat{k}\) and \(\vec{r}=3 \hat{i}-6 \hat{j}+6 \hat{k}\) ?

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(-12 \hat{i}-12 \hat{j}-6 \hat{k}\)
3 \(4 \hat{i}-13 \hat{j}+6 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
TEST SERIES (PHYSICS FST)

266545 Consider the given acceleration time graph, if initial velocity is \(10 \mathrm{~m} / \mathrm{sec}\), then Find velocity after Esec?

1 \(25 \mathrm{~m} / \mathrm{sec}\)
2 \(15 \mathrm{~m} / \mathrm{sec}\)
3 \(35 \mathrm{~m} / \mathrm{sec}\)
4 \(50 \mathrm{~m} / \mathrm{sec}\)
TEST SERIES (PHYSICS FST)

266546 One end of a massless rope, which passes over a massless and frictionless pulley \(P\) is tied to a hook C while the other end is free. Maximum tension that the rope can bear is 500 N . With what value of minimum safe acceleration (in \(\mathrm{ms}^{-2}\) ) can a monkey of 80 kg move down on the rope:

1 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
2 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
3 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
4 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
TEST SERIES (PHYSICS FST)

266543 An aeroplane is to go along straight line from \(A\) to \(B\), and back again. The relative speed with respect to wind is \(V\). The wind blows perpendicular to line \(A B\) with speed \(v\). The distance between \(A\) and \(B\) is I. The total time for the round trip is:

1 \(\frac{2 \ell}{\sqrt{V^2-v^2}}\)
2 \(\frac{2 v i}{v^2-v^2}\)
3 \(\frac{2 v}{v^2-v^2}\)
4 \(\frac{2 \ell}{\sqrt{v^2+v^2}}\)
TEST SERIES (PHYSICS FST)

266544 What is the value of linear velocity, if \(\vec{\omega}=3 \hat{i}-4 \hat{j}+2 \hat{k}\) and \(\vec{r}=3 \hat{i}-6 \hat{j}+6 \hat{k}\) ?

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(-12 \hat{i}-12 \hat{j}-6 \hat{k}\)
3 \(4 \hat{i}-13 \hat{j}+6 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
TEST SERIES (PHYSICS FST)

266545 Consider the given acceleration time graph, if initial velocity is \(10 \mathrm{~m} / \mathrm{sec}\), then Find velocity after Esec?

1 \(25 \mathrm{~m} / \mathrm{sec}\)
2 \(15 \mathrm{~m} / \mathrm{sec}\)
3 \(35 \mathrm{~m} / \mathrm{sec}\)
4 \(50 \mathrm{~m} / \mathrm{sec}\)
TEST SERIES (PHYSICS FST)

266546 One end of a massless rope, which passes over a massless and frictionless pulley \(P\) is tied to a hook C while the other end is free. Maximum tension that the rope can bear is 500 N . With what value of minimum safe acceleration (in \(\mathrm{ms}^{-2}\) ) can a monkey of 80 kg move down on the rope:

1 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
2 \(3.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)
3 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (upward)
4 \(2.75 \mathrm{~m} / \mathrm{sec}^2\) (downward)