266487
Reactance of a capacitor of capacitance \(C\), f for ac frequency \(\frac{400}{\pi} \mathrm{~Hz}\) is \(25 \Omega\). The value of C is
1 \(50 \mu \mathrm{f}\)
2 \(25 \mu^f\)
3 \(100 \mu \mathrm{f}\)
4 \(75 \mu \mathrm{f}\)
Explanation:
a \(X_e=\frac{1}{2 \pi f \mathrm{C}}\) \(\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \mathrm{X}_{\mathrm{c}}}\) \(=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}\) \(=50 \mu \mathrm{f}\)
**NCERT-XII-I-184**
TEST SERIES (PHYSICS FST)
266488
Two resistances of \(6 \Omega 2\) and 93 are connected in series to a 120 volt source. The power consumed by the 6s resistor is
1 384 W
2 576 W
3 1500 W
4 1200 W
Explanation:
a Current through the combination \[ i=\frac{120}{(6+9)}=8 \mathrm{~A} \] So, power consumed by \(6 \Omega\) resistance \[ \mathrm{P}=(8)^2 \times 6=384 \mathrm{~W} \]
**NCERT-XII-I-193**
TEST SERIES (PHYSICS FST)
266490
An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would geneate such a wave
1 \(E_x, B_y\)
2 \(E_y, B_x\)
3 \(E_2, B_x\)
4 \(E_{y^{\prime}} B_z\)
Explanation:
a \[ E x \hat{i} \times B y \hat{j}=C \hat{k} \] i.e. E is along x -axis and \(B\) is along \(y\)-axis.
**NCERT-XII-I-206**
TEST SERIES (PHYSICS FST)
266491
The angle of polarisation for any medium is \(60^{\circ}\), what will be critical angle for this
1 \(\sin ^{-1} \sqrt{3}\)
2 \(\tan ^{-1} \sqrt{3}\)
3 \(\cos ^{-1} \sqrt{3}\)
4 \(\sin ^{-1} \frac{1}{\sqrt{3}}\)
Explanation:
d By using \(\mu=\tan i_p\) \[ \begin{aligned} & \mu=\tan 60^{\circ} \\ & \mu=\sqrt{3} \end{aligned} \] Also \(\mathrm{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)\) \[ =\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \]
**NCERT-XII-I-33**
TEST SERIES (PHYSICS FST)
266492
If the electric flux entering and leaving a closed surface are \(6 \times 10^6\) and \(9 \times 10^6\) Sl units respectively, then the change inside the surface of permitivity of free space \(\varepsilon_0\) is
1 \(\varepsilon_0 \times 10^6\)
2 \(-\varepsilon_0 \times 10^5\)
3 \(-2 \varepsilon_0 \times 10^5\)
4 \(3 \varepsilon_0 \times 10^5\) SECTION-B This section will have 15 questions. Candidate can choose to attempt any 10 questions out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking.
Explanation:
d By Gauss law, we know that \[ \phi=\frac{q}{\varepsilon_0} \text { here, } \] Net electric flux, \[ \begin{aligned} \phi & =\phi_2-\phi_1 \\ & =9 \times 10^6-3 \times 10^6=\frac{q}{\varepsilon_0} \\ q & =3 \times 10^6 \varepsilon_0 \end{aligned} \]
266487
Reactance of a capacitor of capacitance \(C\), f for ac frequency \(\frac{400}{\pi} \mathrm{~Hz}\) is \(25 \Omega\). The value of C is
1 \(50 \mu \mathrm{f}\)
2 \(25 \mu^f\)
3 \(100 \mu \mathrm{f}\)
4 \(75 \mu \mathrm{f}\)
Explanation:
a \(X_e=\frac{1}{2 \pi f \mathrm{C}}\) \(\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \mathrm{X}_{\mathrm{c}}}\) \(=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}\) \(=50 \mu \mathrm{f}\)
**NCERT-XII-I-184**
TEST SERIES (PHYSICS FST)
266488
Two resistances of \(6 \Omega 2\) and 93 are connected in series to a 120 volt source. The power consumed by the 6s resistor is
1 384 W
2 576 W
3 1500 W
4 1200 W
Explanation:
a Current through the combination \[ i=\frac{120}{(6+9)}=8 \mathrm{~A} \] So, power consumed by \(6 \Omega\) resistance \[ \mathrm{P}=(8)^2 \times 6=384 \mathrm{~W} \]
**NCERT-XII-I-193**
TEST SERIES (PHYSICS FST)
266490
An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would geneate such a wave
1 \(E_x, B_y\)
2 \(E_y, B_x\)
3 \(E_2, B_x\)
4 \(E_{y^{\prime}} B_z\)
Explanation:
a \[ E x \hat{i} \times B y \hat{j}=C \hat{k} \] i.e. E is along x -axis and \(B\) is along \(y\)-axis.
**NCERT-XII-I-206**
TEST SERIES (PHYSICS FST)
266491
The angle of polarisation for any medium is \(60^{\circ}\), what will be critical angle for this
1 \(\sin ^{-1} \sqrt{3}\)
2 \(\tan ^{-1} \sqrt{3}\)
3 \(\cos ^{-1} \sqrt{3}\)
4 \(\sin ^{-1} \frac{1}{\sqrt{3}}\)
Explanation:
d By using \(\mu=\tan i_p\) \[ \begin{aligned} & \mu=\tan 60^{\circ} \\ & \mu=\sqrt{3} \end{aligned} \] Also \(\mathrm{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)\) \[ =\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \]
**NCERT-XII-I-33**
TEST SERIES (PHYSICS FST)
266492
If the electric flux entering and leaving a closed surface are \(6 \times 10^6\) and \(9 \times 10^6\) Sl units respectively, then the change inside the surface of permitivity of free space \(\varepsilon_0\) is
1 \(\varepsilon_0 \times 10^6\)
2 \(-\varepsilon_0 \times 10^5\)
3 \(-2 \varepsilon_0 \times 10^5\)
4 \(3 \varepsilon_0 \times 10^5\) SECTION-B This section will have 15 questions. Candidate can choose to attempt any 10 questions out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking.
Explanation:
d By Gauss law, we know that \[ \phi=\frac{q}{\varepsilon_0} \text { here, } \] Net electric flux, \[ \begin{aligned} \phi & =\phi_2-\phi_1 \\ & =9 \times 10^6-3 \times 10^6=\frac{q}{\varepsilon_0} \\ q & =3 \times 10^6 \varepsilon_0 \end{aligned} \]
266487
Reactance of a capacitor of capacitance \(C\), f for ac frequency \(\frac{400}{\pi} \mathrm{~Hz}\) is \(25 \Omega\). The value of C is
1 \(50 \mu \mathrm{f}\)
2 \(25 \mu^f\)
3 \(100 \mu \mathrm{f}\)
4 \(75 \mu \mathrm{f}\)
Explanation:
a \(X_e=\frac{1}{2 \pi f \mathrm{C}}\) \(\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \mathrm{X}_{\mathrm{c}}}\) \(=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}\) \(=50 \mu \mathrm{f}\)
**NCERT-XII-I-184**
TEST SERIES (PHYSICS FST)
266488
Two resistances of \(6 \Omega 2\) and 93 are connected in series to a 120 volt source. The power consumed by the 6s resistor is
1 384 W
2 576 W
3 1500 W
4 1200 W
Explanation:
a Current through the combination \[ i=\frac{120}{(6+9)}=8 \mathrm{~A} \] So, power consumed by \(6 \Omega\) resistance \[ \mathrm{P}=(8)^2 \times 6=384 \mathrm{~W} \]
**NCERT-XII-I-193**
TEST SERIES (PHYSICS FST)
266490
An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would geneate such a wave
1 \(E_x, B_y\)
2 \(E_y, B_x\)
3 \(E_2, B_x\)
4 \(E_{y^{\prime}} B_z\)
Explanation:
a \[ E x \hat{i} \times B y \hat{j}=C \hat{k} \] i.e. E is along x -axis and \(B\) is along \(y\)-axis.
**NCERT-XII-I-206**
TEST SERIES (PHYSICS FST)
266491
The angle of polarisation for any medium is \(60^{\circ}\), what will be critical angle for this
1 \(\sin ^{-1} \sqrt{3}\)
2 \(\tan ^{-1} \sqrt{3}\)
3 \(\cos ^{-1} \sqrt{3}\)
4 \(\sin ^{-1} \frac{1}{\sqrt{3}}\)
Explanation:
d By using \(\mu=\tan i_p\) \[ \begin{aligned} & \mu=\tan 60^{\circ} \\ & \mu=\sqrt{3} \end{aligned} \] Also \(\mathrm{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)\) \[ =\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \]
**NCERT-XII-I-33**
TEST SERIES (PHYSICS FST)
266492
If the electric flux entering and leaving a closed surface are \(6 \times 10^6\) and \(9 \times 10^6\) Sl units respectively, then the change inside the surface of permitivity of free space \(\varepsilon_0\) is
1 \(\varepsilon_0 \times 10^6\)
2 \(-\varepsilon_0 \times 10^5\)
3 \(-2 \varepsilon_0 \times 10^5\)
4 \(3 \varepsilon_0 \times 10^5\) SECTION-B This section will have 15 questions. Candidate can choose to attempt any 10 questions out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking.
Explanation:
d By Gauss law, we know that \[ \phi=\frac{q}{\varepsilon_0} \text { here, } \] Net electric flux, \[ \begin{aligned} \phi & =\phi_2-\phi_1 \\ & =9 \times 10^6-3 \times 10^6=\frac{q}{\varepsilon_0} \\ q & =3 \times 10^6 \varepsilon_0 \end{aligned} \]
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
TEST SERIES (PHYSICS FST)
266487
Reactance of a capacitor of capacitance \(C\), f for ac frequency \(\frac{400}{\pi} \mathrm{~Hz}\) is \(25 \Omega\). The value of C is
1 \(50 \mu \mathrm{f}\)
2 \(25 \mu^f\)
3 \(100 \mu \mathrm{f}\)
4 \(75 \mu \mathrm{f}\)
Explanation:
a \(X_e=\frac{1}{2 \pi f \mathrm{C}}\) \(\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \mathrm{X}_{\mathrm{c}}}\) \(=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}\) \(=50 \mu \mathrm{f}\)
**NCERT-XII-I-184**
TEST SERIES (PHYSICS FST)
266488
Two resistances of \(6 \Omega 2\) and 93 are connected in series to a 120 volt source. The power consumed by the 6s resistor is
1 384 W
2 576 W
3 1500 W
4 1200 W
Explanation:
a Current through the combination \[ i=\frac{120}{(6+9)}=8 \mathrm{~A} \] So, power consumed by \(6 \Omega\) resistance \[ \mathrm{P}=(8)^2 \times 6=384 \mathrm{~W} \]
**NCERT-XII-I-193**
TEST SERIES (PHYSICS FST)
266490
An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would geneate such a wave
1 \(E_x, B_y\)
2 \(E_y, B_x\)
3 \(E_2, B_x\)
4 \(E_{y^{\prime}} B_z\)
Explanation:
a \[ E x \hat{i} \times B y \hat{j}=C \hat{k} \] i.e. E is along x -axis and \(B\) is along \(y\)-axis.
**NCERT-XII-I-206**
TEST SERIES (PHYSICS FST)
266491
The angle of polarisation for any medium is \(60^{\circ}\), what will be critical angle for this
1 \(\sin ^{-1} \sqrt{3}\)
2 \(\tan ^{-1} \sqrt{3}\)
3 \(\cos ^{-1} \sqrt{3}\)
4 \(\sin ^{-1} \frac{1}{\sqrt{3}}\)
Explanation:
d By using \(\mu=\tan i_p\) \[ \begin{aligned} & \mu=\tan 60^{\circ} \\ & \mu=\sqrt{3} \end{aligned} \] Also \(\mathrm{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)\) \[ =\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \]
**NCERT-XII-I-33**
TEST SERIES (PHYSICS FST)
266492
If the electric flux entering and leaving a closed surface are \(6 \times 10^6\) and \(9 \times 10^6\) Sl units respectively, then the change inside the surface of permitivity of free space \(\varepsilon_0\) is
1 \(\varepsilon_0 \times 10^6\)
2 \(-\varepsilon_0 \times 10^5\)
3 \(-2 \varepsilon_0 \times 10^5\)
4 \(3 \varepsilon_0 \times 10^5\) SECTION-B This section will have 15 questions. Candidate can choose to attempt any 10 questions out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking.
Explanation:
d By Gauss law, we know that \[ \phi=\frac{q}{\varepsilon_0} \text { here, } \] Net electric flux, \[ \begin{aligned} \phi & =\phi_2-\phi_1 \\ & =9 \times 10^6-3 \times 10^6=\frac{q}{\varepsilon_0} \\ q & =3 \times 10^6 \varepsilon_0 \end{aligned} \]
266487
Reactance of a capacitor of capacitance \(C\), f for ac frequency \(\frac{400}{\pi} \mathrm{~Hz}\) is \(25 \Omega\). The value of C is
1 \(50 \mu \mathrm{f}\)
2 \(25 \mu^f\)
3 \(100 \mu \mathrm{f}\)
4 \(75 \mu \mathrm{f}\)
Explanation:
a \(X_e=\frac{1}{2 \pi f \mathrm{C}}\) \(\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \mathrm{X}_{\mathrm{c}}}\) \(=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}\) \(=50 \mu \mathrm{f}\)
**NCERT-XII-I-184**
TEST SERIES (PHYSICS FST)
266488
Two resistances of \(6 \Omega 2\) and 93 are connected in series to a 120 volt source. The power consumed by the 6s resistor is
1 384 W
2 576 W
3 1500 W
4 1200 W
Explanation:
a Current through the combination \[ i=\frac{120}{(6+9)}=8 \mathrm{~A} \] So, power consumed by \(6 \Omega\) resistance \[ \mathrm{P}=(8)^2 \times 6=384 \mathrm{~W} \]
**NCERT-XII-I-193**
TEST SERIES (PHYSICS FST)
266490
An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would geneate such a wave
1 \(E_x, B_y\)
2 \(E_y, B_x\)
3 \(E_2, B_x\)
4 \(E_{y^{\prime}} B_z\)
Explanation:
a \[ E x \hat{i} \times B y \hat{j}=C \hat{k} \] i.e. E is along x -axis and \(B\) is along \(y\)-axis.
**NCERT-XII-I-206**
TEST SERIES (PHYSICS FST)
266491
The angle of polarisation for any medium is \(60^{\circ}\), what will be critical angle for this
1 \(\sin ^{-1} \sqrt{3}\)
2 \(\tan ^{-1} \sqrt{3}\)
3 \(\cos ^{-1} \sqrt{3}\)
4 \(\sin ^{-1} \frac{1}{\sqrt{3}}\)
Explanation:
d By using \(\mu=\tan i_p\) \[ \begin{aligned} & \mu=\tan 60^{\circ} \\ & \mu=\sqrt{3} \end{aligned} \] Also \(\mathrm{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)\) \[ =\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \]
**NCERT-XII-I-33**
TEST SERIES (PHYSICS FST)
266492
If the electric flux entering and leaving a closed surface are \(6 \times 10^6\) and \(9 \times 10^6\) Sl units respectively, then the change inside the surface of permitivity of free space \(\varepsilon_0\) is
1 \(\varepsilon_0 \times 10^6\)
2 \(-\varepsilon_0 \times 10^5\)
3 \(-2 \varepsilon_0 \times 10^5\)
4 \(3 \varepsilon_0 \times 10^5\) SECTION-B This section will have 15 questions. Candidate can choose to attempt any 10 questions out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking.
Explanation:
d By Gauss law, we know that \[ \phi=\frac{q}{\varepsilon_0} \text { here, } \] Net electric flux, \[ \begin{aligned} \phi & =\phi_2-\phi_1 \\ & =9 \times 10^6-3 \times 10^6=\frac{q}{\varepsilon_0} \\ q & =3 \times 10^6 \varepsilon_0 \end{aligned} \]