266624
The electric intensity outside a charged conducting sphere of radius \(R\) at a distance r from centre \((r>R)\) is
1 \(\frac{\sigma R^2}{\varepsilon_0 r^2}\)
2 \(\frac{\sigma r^2}{\varepsilon_0 R^2}\)
3 \(\frac{\sigma r}{\varepsilon_0 R}\)
4 \(\frac{\sigma R}{\varepsilon_0 r}\)
Explanation:
a \[ \mathrm{E}=\frac{\sigma \mathrm{R}^2}{\varepsilon_0 r^2} \]
**NCERT XII-I- 35**
TEST SERIES (PHYSICS FST)
266625
A proton of energy 8 eV is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the path will be
266626
An electron of charge e moves with a constant speed \(v\) along a circle or radius r , its magnetic moment will be
1 evr
2 evr/2
3 \(\pi r^2 e v\)
4 \(2 \pi r e v\)
Explanation:
b \[ i=\frac{e}{t}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r} \] Magenetic moment \(\mathrm{IA}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^2=\frac{\mathrm{eVr}}{2}\)
**NCERT-XII-I-128**
TEST SERIES (PHYSICS FST)
266627
The angular momentum of electron in \(n^{\text {th }}\) orbit is given by
1 \(\pi h\)
2 \(\frac{h}{2 \pi n}\)
3 \(n \frac{h}{2 \pi}\)
4 \(n^2 \frac{h}{2 \pi}\)
Explanation:
c
**NCERT XIIIII-299**
TEST SERIES (PHYSICS FST)
266628
A cube is fixed at base and tangential force ' \(F\) ' acting on the upper face of area 'A' and q is shear strain in it, the modulus of rigidity is
266624
The electric intensity outside a charged conducting sphere of radius \(R\) at a distance r from centre \((r>R)\) is
1 \(\frac{\sigma R^2}{\varepsilon_0 r^2}\)
2 \(\frac{\sigma r^2}{\varepsilon_0 R^2}\)
3 \(\frac{\sigma r}{\varepsilon_0 R}\)
4 \(\frac{\sigma R}{\varepsilon_0 r}\)
Explanation:
a \[ \mathrm{E}=\frac{\sigma \mathrm{R}^2}{\varepsilon_0 r^2} \]
**NCERT XII-I- 35**
TEST SERIES (PHYSICS FST)
266625
A proton of energy 8 eV is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the path will be
266626
An electron of charge e moves with a constant speed \(v\) along a circle or radius r , its magnetic moment will be
1 evr
2 evr/2
3 \(\pi r^2 e v\)
4 \(2 \pi r e v\)
Explanation:
b \[ i=\frac{e}{t}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r} \] Magenetic moment \(\mathrm{IA}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^2=\frac{\mathrm{eVr}}{2}\)
**NCERT-XII-I-128**
TEST SERIES (PHYSICS FST)
266627
The angular momentum of electron in \(n^{\text {th }}\) orbit is given by
1 \(\pi h\)
2 \(\frac{h}{2 \pi n}\)
3 \(n \frac{h}{2 \pi}\)
4 \(n^2 \frac{h}{2 \pi}\)
Explanation:
c
**NCERT XIIIII-299**
TEST SERIES (PHYSICS FST)
266628
A cube is fixed at base and tangential force ' \(F\) ' acting on the upper face of area 'A' and q is shear strain in it, the modulus of rigidity is
266624
The electric intensity outside a charged conducting sphere of radius \(R\) at a distance r from centre \((r>R)\) is
1 \(\frac{\sigma R^2}{\varepsilon_0 r^2}\)
2 \(\frac{\sigma r^2}{\varepsilon_0 R^2}\)
3 \(\frac{\sigma r}{\varepsilon_0 R}\)
4 \(\frac{\sigma R}{\varepsilon_0 r}\)
Explanation:
a \[ \mathrm{E}=\frac{\sigma \mathrm{R}^2}{\varepsilon_0 r^2} \]
**NCERT XII-I- 35**
TEST SERIES (PHYSICS FST)
266625
A proton of energy 8 eV is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the path will be
266626
An electron of charge e moves with a constant speed \(v\) along a circle or radius r , its magnetic moment will be
1 evr
2 evr/2
3 \(\pi r^2 e v\)
4 \(2 \pi r e v\)
Explanation:
b \[ i=\frac{e}{t}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r} \] Magenetic moment \(\mathrm{IA}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^2=\frac{\mathrm{eVr}}{2}\)
**NCERT-XII-I-128**
TEST SERIES (PHYSICS FST)
266627
The angular momentum of electron in \(n^{\text {th }}\) orbit is given by
1 \(\pi h\)
2 \(\frac{h}{2 \pi n}\)
3 \(n \frac{h}{2 \pi}\)
4 \(n^2 \frac{h}{2 \pi}\)
Explanation:
c
**NCERT XIIIII-299**
TEST SERIES (PHYSICS FST)
266628
A cube is fixed at base and tangential force ' \(F\) ' acting on the upper face of area 'A' and q is shear strain in it, the modulus of rigidity is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
TEST SERIES (PHYSICS FST)
266624
The electric intensity outside a charged conducting sphere of radius \(R\) at a distance r from centre \((r>R)\) is
1 \(\frac{\sigma R^2}{\varepsilon_0 r^2}\)
2 \(\frac{\sigma r^2}{\varepsilon_0 R^2}\)
3 \(\frac{\sigma r}{\varepsilon_0 R}\)
4 \(\frac{\sigma R}{\varepsilon_0 r}\)
Explanation:
a \[ \mathrm{E}=\frac{\sigma \mathrm{R}^2}{\varepsilon_0 r^2} \]
**NCERT XII-I- 35**
TEST SERIES (PHYSICS FST)
266625
A proton of energy 8 eV is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the path will be
266626
An electron of charge e moves with a constant speed \(v\) along a circle or radius r , its magnetic moment will be
1 evr
2 evr/2
3 \(\pi r^2 e v\)
4 \(2 \pi r e v\)
Explanation:
b \[ i=\frac{e}{t}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r} \] Magenetic moment \(\mathrm{IA}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^2=\frac{\mathrm{eVr}}{2}\)
**NCERT-XII-I-128**
TEST SERIES (PHYSICS FST)
266627
The angular momentum of electron in \(n^{\text {th }}\) orbit is given by
1 \(\pi h\)
2 \(\frac{h}{2 \pi n}\)
3 \(n \frac{h}{2 \pi}\)
4 \(n^2 \frac{h}{2 \pi}\)
Explanation:
c
**NCERT XIIIII-299**
TEST SERIES (PHYSICS FST)
266628
A cube is fixed at base and tangential force ' \(F\) ' acting on the upper face of area 'A' and q is shear strain in it, the modulus of rigidity is
266624
The electric intensity outside a charged conducting sphere of radius \(R\) at a distance r from centre \((r>R)\) is
1 \(\frac{\sigma R^2}{\varepsilon_0 r^2}\)
2 \(\frac{\sigma r^2}{\varepsilon_0 R^2}\)
3 \(\frac{\sigma r}{\varepsilon_0 R}\)
4 \(\frac{\sigma R}{\varepsilon_0 r}\)
Explanation:
a \[ \mathrm{E}=\frac{\sigma \mathrm{R}^2}{\varepsilon_0 r^2} \]
**NCERT XII-I- 35**
TEST SERIES (PHYSICS FST)
266625
A proton of energy 8 eV is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the path will be
266626
An electron of charge e moves with a constant speed \(v\) along a circle or radius r , its magnetic moment will be
1 evr
2 evr/2
3 \(\pi r^2 e v\)
4 \(2 \pi r e v\)
Explanation:
b \[ i=\frac{e}{t}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r} \] Magenetic moment \(\mathrm{IA}=\frac{\mathrm{eV}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^2=\frac{\mathrm{eVr}}{2}\)
**NCERT-XII-I-128**
TEST SERIES (PHYSICS FST)
266627
The angular momentum of electron in \(n^{\text {th }}\) orbit is given by
1 \(\pi h\)
2 \(\frac{h}{2 \pi n}\)
3 \(n \frac{h}{2 \pi}\)
4 \(n^2 \frac{h}{2 \pi}\)
Explanation:
c
**NCERT XIIIII-299**
TEST SERIES (PHYSICS FST)
266628
A cube is fixed at base and tangential force ' \(F\) ' acting on the upper face of area 'A' and q is shear strain in it, the modulus of rigidity is