06. WORK ENERGY AND POWER (HM)
Explanation:
\(s = \frac{{{t^2}}}{4}\) \(ds = \frac{t}{2}dt\)
\(F = ma = \frac{{m{d^2}s}}{{d{t^2}}} = \frac{{6{d^2}}}{{d{t^2}}}\left[ {\frac{{{t^2}}}{4}} \right]\; = \;3N\)
अब, \(W = \int_{\,0}^{\,2} {\,F\,ds} = \int_{\,0}^{\,2} {\,3\frac{t}{2}dt} = \frac{3}{2}\left[ {\frac{{{t^2}}}{2}} \right]_{\,0}^{\,2} = \frac{3}{4}[{(2)^2} - {(0)^2}] = 3J\)