5 RBTS PAPER(CHEMISTRY)
5 RBTS PAPER

164030 The equation is correctly matched for
\( \alpha=\frac{D-d}{(x-1) d} \)
Where \(\mathbf{D}=\) Theoretical vapour density
d = Observed vapour density

1 \(A \rightleftharpoons \frac{x B}{2}+\frac{x C}{3}\)
2 \(\mathrm{A} \rightleftharpoons \frac{\mathrm{xB}}{3}+\left(\frac{2 \mathrm{x}}{3}\right) \mathrm{C}\)
3 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\left(\frac{\mathrm{x}}{4}\right) \mathrm{C}\)
4 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\mathrm{C}\)
5 RBTS PAPER

164031 The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:

1 \(\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}\)
2 \(\frac{\mathrm{K}_1 \mathrm{~K}_3^2}{\mathrm{~K}_2}\)
3 \(\frac{\mathrm{K}_2 \cdot \mathrm{K}_3^3}{\mathrm{~K}_1}\)
4 \(\mathrm{K}_1 \mathrm{~K}_2 \mathrm{~K}_3\)
5 RBTS PAPER

164032 The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:

1 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 3}\)
2 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 2}\)
3 \(\left(\mathrm{K}_{\mathrm{P}} / \mathrm{P}\right)\)
4 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)\)
5 RBTS PAPER

164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:

1 16 times
2 64 times
3 4 times
4 8 times
5 RBTS PAPER

164030 The equation is correctly matched for
\( \alpha=\frac{D-d}{(x-1) d} \)
Where \(\mathbf{D}=\) Theoretical vapour density
d = Observed vapour density

1 \(A \rightleftharpoons \frac{x B}{2}+\frac{x C}{3}\)
2 \(\mathrm{A} \rightleftharpoons \frac{\mathrm{xB}}{3}+\left(\frac{2 \mathrm{x}}{3}\right) \mathrm{C}\)
3 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\left(\frac{\mathrm{x}}{4}\right) \mathrm{C}\)
4 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\mathrm{C}\)
5 RBTS PAPER

164031 The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:

1 \(\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}\)
2 \(\frac{\mathrm{K}_1 \mathrm{~K}_3^2}{\mathrm{~K}_2}\)
3 \(\frac{\mathrm{K}_2 \cdot \mathrm{K}_3^3}{\mathrm{~K}_1}\)
4 \(\mathrm{K}_1 \mathrm{~K}_2 \mathrm{~K}_3\)
5 RBTS PAPER

164032 The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:

1 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 3}\)
2 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 2}\)
3 \(\left(\mathrm{K}_{\mathrm{P}} / \mathrm{P}\right)\)
4 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)\)
5 RBTS PAPER

164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:

1 16 times
2 64 times
3 4 times
4 8 times
5 RBTS PAPER

164030 The equation is correctly matched for
\( \alpha=\frac{D-d}{(x-1) d} \)
Where \(\mathbf{D}=\) Theoretical vapour density
d = Observed vapour density

1 \(A \rightleftharpoons \frac{x B}{2}+\frac{x C}{3}\)
2 \(\mathrm{A} \rightleftharpoons \frac{\mathrm{xB}}{3}+\left(\frac{2 \mathrm{x}}{3}\right) \mathrm{C}\)
3 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\left(\frac{\mathrm{x}}{4}\right) \mathrm{C}\)
4 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\mathrm{C}\)
5 RBTS PAPER

164031 The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:

1 \(\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}\)
2 \(\frac{\mathrm{K}_1 \mathrm{~K}_3^2}{\mathrm{~K}_2}\)
3 \(\frac{\mathrm{K}_2 \cdot \mathrm{K}_3^3}{\mathrm{~K}_1}\)
4 \(\mathrm{K}_1 \mathrm{~K}_2 \mathrm{~K}_3\)
5 RBTS PAPER

164032 The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:

1 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 3}\)
2 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 2}\)
3 \(\left(\mathrm{K}_{\mathrm{P}} / \mathrm{P}\right)\)
4 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)\)
5 RBTS PAPER

164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:

1 16 times
2 64 times
3 4 times
4 8 times
5 RBTS PAPER

164030 The equation is correctly matched for
\( \alpha=\frac{D-d}{(x-1) d} \)
Where \(\mathbf{D}=\) Theoretical vapour density
d = Observed vapour density

1 \(A \rightleftharpoons \frac{x B}{2}+\frac{x C}{3}\)
2 \(\mathrm{A} \rightleftharpoons \frac{\mathrm{xB}}{3}+\left(\frac{2 \mathrm{x}}{3}\right) \mathrm{C}\)
3 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\left(\frac{\mathrm{x}}{4}\right) \mathrm{C}\)
4 \(\mathrm{A} \rightleftharpoons\left(\frac{\mathrm{x}}{2}\right) \mathrm{B}+\mathrm{C}\)
5 RBTS PAPER

164031 The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:

1 \(\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}\)
2 \(\frac{\mathrm{K}_1 \mathrm{~K}_3^2}{\mathrm{~K}_2}\)
3 \(\frac{\mathrm{K}_2 \cdot \mathrm{K}_3^3}{\mathrm{~K}_1}\)
4 \(\mathrm{K}_1 \mathrm{~K}_2 \mathrm{~K}_3\)
5 RBTS PAPER

164032 The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:

1 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 3}\)
2 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)^{1 / 2}\)
3 \(\left(\mathrm{K}_{\mathrm{P}} / \mathrm{P}\right)\)
4 \(\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)\)
5 RBTS PAPER

164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:

1 16 times
2 64 times
3 4 times
4 8 times