164031
The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:
164032
The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:
164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:
164031
The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:
164032
The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:
164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:
164031
The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:
164032
The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:
164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto:
164031
The following gaseous equilibrium are given
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3-\cdots \cdot-\cdots-\mathrm{K}_1 \)
\( \mathrm{~N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO} \text {---.--.--.--- } \mathrm{K}_2 \)
\( \mathrm{H}_2+1 / 2 \mathrm{O}_2 \rightleftharpoons \mathrm{H}_2 \mathrm{O} \text {..........-. } \mathrm{K}_3 \)
\( \)The equilibrium constant of the reaction
\(2 \mathrm{NH}_{3(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{g})\), in terms of \(K_1, K_2\) and \(K_3\) is:
164032
The dissociation equilibrium of a gas \(A B_2\) can be represented as: \(2 \mathrm{AB}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_2(\mathrm{~g})\)
The degree of dissociation is ' \(x\) ' and is small compared to 1 . The expression relating the degree of dissociation ( \(\mathbf{x}\) ) with equilibrium constant \(\mathrm{Kp}\) and total pressure \(\mathbf{P}\) is:
164035 If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{+3}\) (aq.) \(+3 \mathrm{OH}^{-}\)(aq.) is decreased upto \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{+3}\) will increase upto: