For molecules such as $\mathrm{B}_2, \mathrm{C}_2, \mathrm{~N}_2$ etc. the increasing order of energies of various molecular orbitals is $\begin{aligned} & \sigma 1 \mathrm{~s}<\sigma^* 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{\star} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}} \\ & <\left(\pi^{\star} 2 \mathrm{p}_{\mathrm{x}}=\pi^{\star} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{\star} 2 \mathrm{p}_{\mathrm{z}} \end{aligned}$
Mod. NEET
2 RBTS PAPER
160833
There is change in the type of hybridisation when:
1 $\mathrm{NH}_3$ combines with $\mathrm{H}^{+}$
2 $\mathrm{AlH}_3$ combines with $\mathrm{H}^{-}$
3 $\mathrm{NH}_3$ forms $\mathrm{NH}_2^{-}$
4 All of these
Explanation:
In $\mathrm{AlH}_3 \mathrm{Al}$ is $\mathrm{sp}^2$ hybridised whereas in $\mathrm{AlH}_4^{-}$it is $\mathrm{sp}^3$ hybridised.
For molecules such as $\mathrm{B}_2, \mathrm{C}_2, \mathrm{~N}_2$ etc. the increasing order of energies of various molecular orbitals is $\begin{aligned} & \sigma 1 \mathrm{~s}<\sigma^* 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{\star} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}} \\ & <\left(\pi^{\star} 2 \mathrm{p}_{\mathrm{x}}=\pi^{\star} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{\star} 2 \mathrm{p}_{\mathrm{z}} \end{aligned}$
Mod. NEET
2 RBTS PAPER
160833
There is change in the type of hybridisation when:
1 $\mathrm{NH}_3$ combines with $\mathrm{H}^{+}$
2 $\mathrm{AlH}_3$ combines with $\mathrm{H}^{-}$
3 $\mathrm{NH}_3$ forms $\mathrm{NH}_2^{-}$
4 All of these
Explanation:
In $\mathrm{AlH}_3 \mathrm{Al}$ is $\mathrm{sp}^2$ hybridised whereas in $\mathrm{AlH}_4^{-}$it is $\mathrm{sp}^3$ hybridised.
For molecules such as $\mathrm{B}_2, \mathrm{C}_2, \mathrm{~N}_2$ etc. the increasing order of energies of various molecular orbitals is $\begin{aligned} & \sigma 1 \mathrm{~s}<\sigma^* 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{\star} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}} \\ & <\left(\pi^{\star} 2 \mathrm{p}_{\mathrm{x}}=\pi^{\star} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{\star} 2 \mathrm{p}_{\mathrm{z}} \end{aligned}$
Mod. NEET
2 RBTS PAPER
160833
There is change in the type of hybridisation when:
1 $\mathrm{NH}_3$ combines with $\mathrm{H}^{+}$
2 $\mathrm{AlH}_3$ combines with $\mathrm{H}^{-}$
3 $\mathrm{NH}_3$ forms $\mathrm{NH}_2^{-}$
4 All of these
Explanation:
In $\mathrm{AlH}_3 \mathrm{Al}$ is $\mathrm{sp}^2$ hybridised whereas in $\mathrm{AlH}_4^{-}$it is $\mathrm{sp}^3$ hybridised.
For molecules such as $\mathrm{B}_2, \mathrm{C}_2, \mathrm{~N}_2$ etc. the increasing order of energies of various molecular orbitals is $\begin{aligned} & \sigma 1 \mathrm{~s}<\sigma^* 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{\star} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}} \\ & <\left(\pi^{\star} 2 \mathrm{p}_{\mathrm{x}}=\pi^{\star} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{\star} 2 \mathrm{p}_{\mathrm{z}} \end{aligned}$
Mod. NEET
2 RBTS PAPER
160833
There is change in the type of hybridisation when:
1 $\mathrm{NH}_3$ combines with $\mathrm{H}^{+}$
2 $\mathrm{AlH}_3$ combines with $\mathrm{H}^{-}$
3 $\mathrm{NH}_3$ forms $\mathrm{NH}_2^{-}$
4 All of these
Explanation:
In $\mathrm{AlH}_3 \mathrm{Al}$ is $\mathrm{sp}^2$ hybridised whereas in $\mathrm{AlH}_4^{-}$it is $\mathrm{sp}^3$ hybridised.