160808
Assertion. The maximum speed at which a car can turn on a level curve of radius $40 \mathrm{~m}$ is $11 \mathrm{~m} / \mathrm{s}$. The coefficient of friction must be 0.3 .
Reason. $\mathrm{v}=\sqrt{\mu \mathrm{rg}}, \mu=\frac{\mathrm{v}^2}{\mathrm{rg}}=\frac{11 \times 11}{40 \times 10}=0.3$
160808
Assertion. The maximum speed at which a car can turn on a level curve of radius $40 \mathrm{~m}$ is $11 \mathrm{~m} / \mathrm{s}$. The coefficient of friction must be 0.3 .
Reason. $\mathrm{v}=\sqrt{\mu \mathrm{rg}}, \mu=\frac{\mathrm{v}^2}{\mathrm{rg}}=\frac{11 \times 11}{40 \times 10}=0.3$
160808
Assertion. The maximum speed at which a car can turn on a level curve of radius $40 \mathrm{~m}$ is $11 \mathrm{~m} / \mathrm{s}$. The coefficient of friction must be 0.3 .
Reason. $\mathrm{v}=\sqrt{\mu \mathrm{rg}}, \mu=\frac{\mathrm{v}^2}{\mathrm{rg}}=\frac{11 \times 11}{40 \times 10}=0.3$
160808
Assertion. The maximum speed at which a car can turn on a level curve of radius $40 \mathrm{~m}$ is $11 \mathrm{~m} / \mathrm{s}$. The coefficient of friction must be 0.3 .
Reason. $\mathrm{v}=\sqrt{\mu \mathrm{rg}}, \mu=\frac{\mathrm{v}^2}{\mathrm{rg}}=\frac{11 \times 11}{40 \times 10}=0.3$
160808
Assertion. The maximum speed at which a car can turn on a level curve of radius $40 \mathrm{~m}$ is $11 \mathrm{~m} / \mathrm{s}$. The coefficient of friction must be 0.3 .
Reason. $\mathrm{v}=\sqrt{\mu \mathrm{rg}}, \mu=\frac{\mathrm{v}^2}{\mathrm{rg}}=\frac{11 \times 11}{40 \times 10}=0.3$