2 RBTS PAPER(PHYSICS)
2 RBTS PAPER

160778 Rocket engines lift a rocket from the earth surface, because hot gases with high velocity

1 heat up the air which lifts the rocket
2 push against the earth
3 react against the rocket and push it up
4 push against the air
2 RBTS PAPER

160779 The force on a rocket moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ is $210 \mathrm{~N}$. Then the rate of combustion of the fuel will be

1 $3.5 \mathrm{~kg} / \mathrm{sec}$
2 $2.1 \mathrm{~kg} / \mathrm{sec}$
3 $0.7 \mathrm{~kg} / \mathrm{sec}$
4 $1.4 \mathrm{~kg} / \mathrm{sec}$
2 RBTS PAPER

160780 A bullet of mass $200 \mathrm{~g}$ is fired at a speed of $5 \mathrm{~m} / \mathrm{s}$. The gun of mass $1 \mathrm{~kg}$ rebounds backward with a velocity of

1 $10 \mathrm{~m} / \mathrm{s}$
2 $-1 \mathrm{~m} / \mathrm{s}$
3 $0.1 \mathrm{~m} / \mathrm{s}$
4 $0.01 \mathrm{~m} / \mathrm{s}$
2 RBTS PAPER

160781 A rigid ball of mass $m$ strikes a rigid wall at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure.
The value of impulse imparted by the wall in the ball will be:

1 $\mathrm{mv} / 2$
2 $\mathrm{mv}$
3 $\mathrm{mv} / 3$
4 $2 \mathrm{mv}$
2 RBTS PAPER

160782 An object kept on a smooth inclined plane of an angle $\theta$ can be kept stationary relative to the incline by giving a horizontal acceleration to the inclined plane given by:

1 $g \cos \theta$
2 $\mathrm{g} \tan \theta$
3 $g \sin \theta$
4 None of these
2 RBTS PAPER

160778 Rocket engines lift a rocket from the earth surface, because hot gases with high velocity

1 heat up the air which lifts the rocket
2 push against the earth
3 react against the rocket and push it up
4 push against the air
2 RBTS PAPER

160779 The force on a rocket moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ is $210 \mathrm{~N}$. Then the rate of combustion of the fuel will be

1 $3.5 \mathrm{~kg} / \mathrm{sec}$
2 $2.1 \mathrm{~kg} / \mathrm{sec}$
3 $0.7 \mathrm{~kg} / \mathrm{sec}$
4 $1.4 \mathrm{~kg} / \mathrm{sec}$
2 RBTS PAPER

160780 A bullet of mass $200 \mathrm{~g}$ is fired at a speed of $5 \mathrm{~m} / \mathrm{s}$. The gun of mass $1 \mathrm{~kg}$ rebounds backward with a velocity of

1 $10 \mathrm{~m} / \mathrm{s}$
2 $-1 \mathrm{~m} / \mathrm{s}$
3 $0.1 \mathrm{~m} / \mathrm{s}$
4 $0.01 \mathrm{~m} / \mathrm{s}$
2 RBTS PAPER

160781 A rigid ball of mass $m$ strikes a rigid wall at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure.
The value of impulse imparted by the wall in the ball will be:

1 $\mathrm{mv} / 2$
2 $\mathrm{mv}$
3 $\mathrm{mv} / 3$
4 $2 \mathrm{mv}$
2 RBTS PAPER

160782 An object kept on a smooth inclined plane of an angle $\theta$ can be kept stationary relative to the incline by giving a horizontal acceleration to the inclined plane given by:

1 $g \cos \theta$
2 $\mathrm{g} \tan \theta$
3 $g \sin \theta$
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
2 RBTS PAPER

160778 Rocket engines lift a rocket from the earth surface, because hot gases with high velocity

1 heat up the air which lifts the rocket
2 push against the earth
3 react against the rocket and push it up
4 push against the air
2 RBTS PAPER

160779 The force on a rocket moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ is $210 \mathrm{~N}$. Then the rate of combustion of the fuel will be

1 $3.5 \mathrm{~kg} / \mathrm{sec}$
2 $2.1 \mathrm{~kg} / \mathrm{sec}$
3 $0.7 \mathrm{~kg} / \mathrm{sec}$
4 $1.4 \mathrm{~kg} / \mathrm{sec}$
2 RBTS PAPER

160780 A bullet of mass $200 \mathrm{~g}$ is fired at a speed of $5 \mathrm{~m} / \mathrm{s}$. The gun of mass $1 \mathrm{~kg}$ rebounds backward with a velocity of

1 $10 \mathrm{~m} / \mathrm{s}$
2 $-1 \mathrm{~m} / \mathrm{s}$
3 $0.1 \mathrm{~m} / \mathrm{s}$
4 $0.01 \mathrm{~m} / \mathrm{s}$
2 RBTS PAPER

160781 A rigid ball of mass $m$ strikes a rigid wall at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure.
The value of impulse imparted by the wall in the ball will be:

1 $\mathrm{mv} / 2$
2 $\mathrm{mv}$
3 $\mathrm{mv} / 3$
4 $2 \mathrm{mv}$
2 RBTS PAPER

160782 An object kept on a smooth inclined plane of an angle $\theta$ can be kept stationary relative to the incline by giving a horizontal acceleration to the inclined plane given by:

1 $g \cos \theta$
2 $\mathrm{g} \tan \theta$
3 $g \sin \theta$
4 None of these
2 RBTS PAPER

160778 Rocket engines lift a rocket from the earth surface, because hot gases with high velocity

1 heat up the air which lifts the rocket
2 push against the earth
3 react against the rocket and push it up
4 push against the air
2 RBTS PAPER

160779 The force on a rocket moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ is $210 \mathrm{~N}$. Then the rate of combustion of the fuel will be

1 $3.5 \mathrm{~kg} / \mathrm{sec}$
2 $2.1 \mathrm{~kg} / \mathrm{sec}$
3 $0.7 \mathrm{~kg} / \mathrm{sec}$
4 $1.4 \mathrm{~kg} / \mathrm{sec}$
2 RBTS PAPER

160780 A bullet of mass $200 \mathrm{~g}$ is fired at a speed of $5 \mathrm{~m} / \mathrm{s}$. The gun of mass $1 \mathrm{~kg}$ rebounds backward with a velocity of

1 $10 \mathrm{~m} / \mathrm{s}$
2 $-1 \mathrm{~m} / \mathrm{s}$
3 $0.1 \mathrm{~m} / \mathrm{s}$
4 $0.01 \mathrm{~m} / \mathrm{s}$
2 RBTS PAPER

160781 A rigid ball of mass $m$ strikes a rigid wall at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure.
The value of impulse imparted by the wall in the ball will be:

1 $\mathrm{mv} / 2$
2 $\mathrm{mv}$
3 $\mathrm{mv} / 3$
4 $2 \mathrm{mv}$
2 RBTS PAPER

160782 An object kept on a smooth inclined plane of an angle $\theta$ can be kept stationary relative to the incline by giving a horizontal acceleration to the inclined plane given by:

1 $g \cos \theta$
2 $\mathrm{g} \tan \theta$
3 $g \sin \theta$
4 None of these
2 RBTS PAPER

160778 Rocket engines lift a rocket from the earth surface, because hot gases with high velocity

1 heat up the air which lifts the rocket
2 push against the earth
3 react against the rocket and push it up
4 push against the air
2 RBTS PAPER

160779 The force on a rocket moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ is $210 \mathrm{~N}$. Then the rate of combustion of the fuel will be

1 $3.5 \mathrm{~kg} / \mathrm{sec}$
2 $2.1 \mathrm{~kg} / \mathrm{sec}$
3 $0.7 \mathrm{~kg} / \mathrm{sec}$
4 $1.4 \mathrm{~kg} / \mathrm{sec}$
2 RBTS PAPER

160780 A bullet of mass $200 \mathrm{~g}$ is fired at a speed of $5 \mathrm{~m} / \mathrm{s}$. The gun of mass $1 \mathrm{~kg}$ rebounds backward with a velocity of

1 $10 \mathrm{~m} / \mathrm{s}$
2 $-1 \mathrm{~m} / \mathrm{s}$
3 $0.1 \mathrm{~m} / \mathrm{s}$
4 $0.01 \mathrm{~m} / \mathrm{s}$
2 RBTS PAPER

160781 A rigid ball of mass $m$ strikes a rigid wall at $60^{\circ}$ and gets reflected without loss of speed as shown in the figure.
The value of impulse imparted by the wall in the ball will be:

1 $\mathrm{mv} / 2$
2 $\mathrm{mv}$
3 $\mathrm{mv} / 3$
4 $2 \mathrm{mv}$
2 RBTS PAPER

160782 An object kept on a smooth inclined plane of an angle $\theta$ can be kept stationary relative to the incline by giving a horizontal acceleration to the inclined plane given by:

1 $g \cos \theta$
2 $\mathrm{g} \tan \theta$
3 $g \sin \theta$
4 None of these