2 RBTS PAPER(PHYSICS)
2 RBTS PAPER

160783 A monkey of mass $\mathbf{2 0} \mathbf{~ k g}$ is holding a vertical rope. The rope will not break when a mass of $25 \mathbf{~ k g}$ is suspended from it but will break if the mass exceeds $25 \mathrm{~kg}$. What is the maximum acceleration with which the monkey can climb up along the rope? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$

1 $25 \mathrm{~m} / \mathrm{s}^2$
2 $5 \mathrm{~m} / \mathrm{s}^2$
3 $2.5 \mathrm{~m} / \mathrm{s}^2$
4 $10 \mathrm{~m} / \mathrm{s}^2$
2 RBTS PAPER

160784 A particle of mass $m$ is executing uniform circular motion on a path of radius $r$. If $p$ is the magnitude of its linear momentum. The radial force acting on the particle is

1 $\mathrm{pmr}$
2 $\frac{r m}{p}$
3 $\frac{m p^2}{r}$
4 $\frac{\mathrm{p}^2}{\mathrm{rm}}$
2 RBTS PAPER

160785 A body of mass $\mathbf{1 0} \mathbf{~ k g}$ lies on a rough horizontal surface. When a horizontal force of $F$ Newtons acts on it, it gets an acceleration of $5 \mathrm{~m} / \mathrm{s}^2$ and when the horizontal force is doubled, it gets an acceleration of $18 \mathrm{~m} / \mathrm{s}^2$. The coefficient of friction between the body and the horizontal surface (assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ) is

1 0.4
2 0.8
3 0.2
4 0.6
2 RBTS PAPER

160786 In a rocket, fuel burns at the rate of $1 \mathrm{~kg} / \mathrm{s}$. This fuel is ejected from the rocket with a velocity of $60 \mathrm{~km} / \mathrm{s}$. This exerts a force on the rocket equal to

1 $600 \mathrm{~N}$
2 $60000 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $6000 \mathrm{~N}$
2 RBTS PAPER

160783 A monkey of mass $\mathbf{2 0} \mathbf{~ k g}$ is holding a vertical rope. The rope will not break when a mass of $25 \mathbf{~ k g}$ is suspended from it but will break if the mass exceeds $25 \mathrm{~kg}$. What is the maximum acceleration with which the monkey can climb up along the rope? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$

1 $25 \mathrm{~m} / \mathrm{s}^2$
2 $5 \mathrm{~m} / \mathrm{s}^2$
3 $2.5 \mathrm{~m} / \mathrm{s}^2$
4 $10 \mathrm{~m} / \mathrm{s}^2$
2 RBTS PAPER

160784 A particle of mass $m$ is executing uniform circular motion on a path of radius $r$. If $p$ is the magnitude of its linear momentum. The radial force acting on the particle is

1 $\mathrm{pmr}$
2 $\frac{r m}{p}$
3 $\frac{m p^2}{r}$
4 $\frac{\mathrm{p}^2}{\mathrm{rm}}$
2 RBTS PAPER

160785 A body of mass $\mathbf{1 0} \mathbf{~ k g}$ lies on a rough horizontal surface. When a horizontal force of $F$ Newtons acts on it, it gets an acceleration of $5 \mathrm{~m} / \mathrm{s}^2$ and when the horizontal force is doubled, it gets an acceleration of $18 \mathrm{~m} / \mathrm{s}^2$. The coefficient of friction between the body and the horizontal surface (assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ) is

1 0.4
2 0.8
3 0.2
4 0.6
2 RBTS PAPER

160786 In a rocket, fuel burns at the rate of $1 \mathrm{~kg} / \mathrm{s}$. This fuel is ejected from the rocket with a velocity of $60 \mathrm{~km} / \mathrm{s}$. This exerts a force on the rocket equal to

1 $600 \mathrm{~N}$
2 $60000 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $6000 \mathrm{~N}$
2 RBTS PAPER

160783 A monkey of mass $\mathbf{2 0} \mathbf{~ k g}$ is holding a vertical rope. The rope will not break when a mass of $25 \mathbf{~ k g}$ is suspended from it but will break if the mass exceeds $25 \mathrm{~kg}$. What is the maximum acceleration with which the monkey can climb up along the rope? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$

1 $25 \mathrm{~m} / \mathrm{s}^2$
2 $5 \mathrm{~m} / \mathrm{s}^2$
3 $2.5 \mathrm{~m} / \mathrm{s}^2$
4 $10 \mathrm{~m} / \mathrm{s}^2$
2 RBTS PAPER

160784 A particle of mass $m$ is executing uniform circular motion on a path of radius $r$. If $p$ is the magnitude of its linear momentum. The radial force acting on the particle is

1 $\mathrm{pmr}$
2 $\frac{r m}{p}$
3 $\frac{m p^2}{r}$
4 $\frac{\mathrm{p}^2}{\mathrm{rm}}$
2 RBTS PAPER

160785 A body of mass $\mathbf{1 0} \mathbf{~ k g}$ lies on a rough horizontal surface. When a horizontal force of $F$ Newtons acts on it, it gets an acceleration of $5 \mathrm{~m} / \mathrm{s}^2$ and when the horizontal force is doubled, it gets an acceleration of $18 \mathrm{~m} / \mathrm{s}^2$. The coefficient of friction between the body and the horizontal surface (assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ) is

1 0.4
2 0.8
3 0.2
4 0.6
2 RBTS PAPER

160786 In a rocket, fuel burns at the rate of $1 \mathrm{~kg} / \mathrm{s}$. This fuel is ejected from the rocket with a velocity of $60 \mathrm{~km} / \mathrm{s}$. This exerts a force on the rocket equal to

1 $600 \mathrm{~N}$
2 $60000 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $6000 \mathrm{~N}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
2 RBTS PAPER

160783 A monkey of mass $\mathbf{2 0} \mathbf{~ k g}$ is holding a vertical rope. The rope will not break when a mass of $25 \mathbf{~ k g}$ is suspended from it but will break if the mass exceeds $25 \mathrm{~kg}$. What is the maximum acceleration with which the monkey can climb up along the rope? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$

1 $25 \mathrm{~m} / \mathrm{s}^2$
2 $5 \mathrm{~m} / \mathrm{s}^2$
3 $2.5 \mathrm{~m} / \mathrm{s}^2$
4 $10 \mathrm{~m} / \mathrm{s}^2$
2 RBTS PAPER

160784 A particle of mass $m$ is executing uniform circular motion on a path of radius $r$. If $p$ is the magnitude of its linear momentum. The radial force acting on the particle is

1 $\mathrm{pmr}$
2 $\frac{r m}{p}$
3 $\frac{m p^2}{r}$
4 $\frac{\mathrm{p}^2}{\mathrm{rm}}$
2 RBTS PAPER

160785 A body of mass $\mathbf{1 0} \mathbf{~ k g}$ lies on a rough horizontal surface. When a horizontal force of $F$ Newtons acts on it, it gets an acceleration of $5 \mathrm{~m} / \mathrm{s}^2$ and when the horizontal force is doubled, it gets an acceleration of $18 \mathrm{~m} / \mathrm{s}^2$. The coefficient of friction between the body and the horizontal surface (assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ) is

1 0.4
2 0.8
3 0.2
4 0.6
2 RBTS PAPER

160786 In a rocket, fuel burns at the rate of $1 \mathrm{~kg} / \mathrm{s}$. This fuel is ejected from the rocket with a velocity of $60 \mathrm{~km} / \mathrm{s}$. This exerts a force on the rocket equal to

1 $600 \mathrm{~N}$
2 $60000 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $6000 \mathrm{~N}$