6 RBTS PAPER(CHEMISTRY)
6 RBTS PAPER

163247 The equivalent conductance of \(M / 32\) solution of \(a\) weak monobasic acid is \(8.0 \mathrm{mho} \mathrm{cm}^2\) and at infinite dilutin is \(400 \mathrm{mho} \mathrm{cm}^2\). The dissociation constant of this acid is : [RBQ]

1 \(1.25 \times 10^{-5}\)
2 \(1.25 \times 10^{-6}\)
3 \(6.25 \times 10^{-4}\)
4 \(1.25 \times 10^{-4}\)
6 RBTS PAPER

163248 If the \(E_{c e l l}^0\) for a given reaction has a negative value, then which of the following gives the correct relationships for the values of \(\Delta \mathbf{G}^0\) and \(K_{\text {eq. }}\) : [RBQ]

1 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\mathrm{eq}}<1\)
2 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\text {eq }}>1\)
3 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}>1\)
4 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}<1\)
6 RBTS PAPER

163249 The conductivity of \(0.2 \mathrm{M}\) solution of \(\mathrm{KCl}\) at \(298 \mathrm{~K}\) is \(0.0248 \mathrm{~S} \mathrm{~cm}^{-1}\). Calculate its molar conductivity: [RBQ]

1 \(120 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(134 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(145 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
SECTION - B
6 RBTS PAPER

163250 Equivalent conductance of \(\mathrm{NaCl}, \mathrm{HCl}\) and \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COONa}\) at infinite dilution are 126.45, 426.16 and \(91 \mathrm{ohm}^{-1} \mathrm{~cm}^2\), respectively. The equivalent conductance of \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COOH}\) is : [RBQ]

1 \(201.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
2 \(390.71 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
3 \(698.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
4 \(540.48 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
6 RBTS PAPER

163247 The equivalent conductance of \(M / 32\) solution of \(a\) weak monobasic acid is \(8.0 \mathrm{mho} \mathrm{cm}^2\) and at infinite dilutin is \(400 \mathrm{mho} \mathrm{cm}^2\). The dissociation constant of this acid is : [RBQ]

1 \(1.25 \times 10^{-5}\)
2 \(1.25 \times 10^{-6}\)
3 \(6.25 \times 10^{-4}\)
4 \(1.25 \times 10^{-4}\)
6 RBTS PAPER

163248 If the \(E_{c e l l}^0\) for a given reaction has a negative value, then which of the following gives the correct relationships for the values of \(\Delta \mathbf{G}^0\) and \(K_{\text {eq. }}\) : [RBQ]

1 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\mathrm{eq}}<1\)
2 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\text {eq }}>1\)
3 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}>1\)
4 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}<1\)
6 RBTS PAPER

163249 The conductivity of \(0.2 \mathrm{M}\) solution of \(\mathrm{KCl}\) at \(298 \mathrm{~K}\) is \(0.0248 \mathrm{~S} \mathrm{~cm}^{-1}\). Calculate its molar conductivity: [RBQ]

1 \(120 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(134 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(145 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
SECTION - B
6 RBTS PAPER

163250 Equivalent conductance of \(\mathrm{NaCl}, \mathrm{HCl}\) and \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COONa}\) at infinite dilution are 126.45, 426.16 and \(91 \mathrm{ohm}^{-1} \mathrm{~cm}^2\), respectively. The equivalent conductance of \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COOH}\) is : [RBQ]

1 \(201.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
2 \(390.71 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
3 \(698.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
4 \(540.48 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
6 RBTS PAPER

163247 The equivalent conductance of \(M / 32\) solution of \(a\) weak monobasic acid is \(8.0 \mathrm{mho} \mathrm{cm}^2\) and at infinite dilutin is \(400 \mathrm{mho} \mathrm{cm}^2\). The dissociation constant of this acid is : [RBQ]

1 \(1.25 \times 10^{-5}\)
2 \(1.25 \times 10^{-6}\)
3 \(6.25 \times 10^{-4}\)
4 \(1.25 \times 10^{-4}\)
6 RBTS PAPER

163248 If the \(E_{c e l l}^0\) for a given reaction has a negative value, then which of the following gives the correct relationships for the values of \(\Delta \mathbf{G}^0\) and \(K_{\text {eq. }}\) : [RBQ]

1 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\mathrm{eq}}<1\)
2 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\text {eq }}>1\)
3 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}>1\)
4 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}<1\)
6 RBTS PAPER

163249 The conductivity of \(0.2 \mathrm{M}\) solution of \(\mathrm{KCl}\) at \(298 \mathrm{~K}\) is \(0.0248 \mathrm{~S} \mathrm{~cm}^{-1}\). Calculate its molar conductivity: [RBQ]

1 \(120 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(134 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(145 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
SECTION - B
6 RBTS PAPER

163250 Equivalent conductance of \(\mathrm{NaCl}, \mathrm{HCl}\) and \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COONa}\) at infinite dilution are 126.45, 426.16 and \(91 \mathrm{ohm}^{-1} \mathrm{~cm}^2\), respectively. The equivalent conductance of \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COOH}\) is : [RBQ]

1 \(201.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
2 \(390.71 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
3 \(698.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
4 \(540.48 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
6 RBTS PAPER

163247 The equivalent conductance of \(M / 32\) solution of \(a\) weak monobasic acid is \(8.0 \mathrm{mho} \mathrm{cm}^2\) and at infinite dilutin is \(400 \mathrm{mho} \mathrm{cm}^2\). The dissociation constant of this acid is : [RBQ]

1 \(1.25 \times 10^{-5}\)
2 \(1.25 \times 10^{-6}\)
3 \(6.25 \times 10^{-4}\)
4 \(1.25 \times 10^{-4}\)
6 RBTS PAPER

163248 If the \(E_{c e l l}^0\) for a given reaction has a negative value, then which of the following gives the correct relationships for the values of \(\Delta \mathbf{G}^0\) and \(K_{\text {eq. }}\) : [RBQ]

1 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\mathrm{eq}}<1\)
2 \(\Delta \mathrm{G}^0>0 ; \mathrm{K}_{\text {eq }}>1\)
3 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}>1\)
4 \(\Delta \mathrm{G}^0<0 ; \mathrm{K}_{\text {eq }}<1\)
6 RBTS PAPER

163249 The conductivity of \(0.2 \mathrm{M}\) solution of \(\mathrm{KCl}\) at \(298 \mathrm{~K}\) is \(0.0248 \mathrm{~S} \mathrm{~cm}^{-1}\). Calculate its molar conductivity: [RBQ]

1 \(120 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(134 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(145 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
SECTION - B
6 RBTS PAPER

163250 Equivalent conductance of \(\mathrm{NaCl}, \mathrm{HCl}\) and \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COONa}\) at infinite dilution are 126.45, 426.16 and \(91 \mathrm{ohm}^{-1} \mathrm{~cm}^2\), respectively. The equivalent conductance of \(\mathrm{C}_2 \mathrm{H}_5 \mathrm{COOH}\) is : [RBQ]

1 \(201.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
2 \(390.71 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
3 \(698.28 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)
4 \(540.48 \mathrm{ohm}^{-1} \mathrm{~cm}^2\)