155537
In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$
155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is
155537
In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$
155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is
155537
In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$
155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is
155537
In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$
155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is
155537
In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$
155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is