DisplacementCurrent
Electromagnetic Wave

155534 Assertion: The velocity of electromagnetic waves depends on electric and magnetic properties of the medium.
Reason: Velocity of electromagnetic waves in free space is constant.

1 If both Assertion and Reason are correct and reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion
3 If Assertion is correct but Reason is incorrect
4 If both the Assertion and Reason are incorrect.
Electromagnetic Wave

155535 The oscillating electric field of an electromagnetic wave is given by $E_{y}=30 \sin (2 \times$ $\left.10^{11} t+300 \pi x\right) V^{-1}$. Then, the value of wavelength of the electromagnetic wave is

1 $5.67 \times 10^{-3} \mathrm{~m}$
2 $6.67 \times 10^{-3} \mathrm{~m}$
3 $66.7 \times 10^{-3} \mathrm{~m}$
4 $7.66 \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155536 An electromagnetic wave of frequency $2 \mathrm{MHz}$ propagates from vacuum to a non-magnetic medium of relative permittivity 9. Then its' wavelength

1 Increase by $100 \mathrm{~m}$
2 Increases by $50 \mathrm{~m}$
3 Decreases by $50 \mathrm{~mm}$
4 Decreases by $100 \mathrm{~m}$
Electromagnetic Wave

155537 In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$

1 \(1.52 \times 10^{-9} \mathrm{Jm}^{-3}\)
2 \(2.54 \times 10^{-19} \mathrm{Jm}^{-3}\)
3 \(3.54 \times 10^{-9} \mathrm{Jm}^{-3}\)
4 \(4.56 \times 10^{-9} \mathrm{Jm}^{-3}\)$
Electromagnetic Wave

155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is

1 $2 \mathrm{~m}^{-1}$
2 $0.5 \mathrm{~m}^{-1}$
3 $6 \mathrm{~m}^{-1}$
4 $3 \mathrm{~m}^{-1}$
Electromagnetic Wave

155534 Assertion: The velocity of electromagnetic waves depends on electric and magnetic properties of the medium.
Reason: Velocity of electromagnetic waves in free space is constant.

1 If both Assertion and Reason are correct and reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion
3 If Assertion is correct but Reason is incorrect
4 If both the Assertion and Reason are incorrect.
Electromagnetic Wave

155535 The oscillating electric field of an electromagnetic wave is given by $E_{y}=30 \sin (2 \times$ $\left.10^{11} t+300 \pi x\right) V^{-1}$. Then, the value of wavelength of the electromagnetic wave is

1 $5.67 \times 10^{-3} \mathrm{~m}$
2 $6.67 \times 10^{-3} \mathrm{~m}$
3 $66.7 \times 10^{-3} \mathrm{~m}$
4 $7.66 \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155536 An electromagnetic wave of frequency $2 \mathrm{MHz}$ propagates from vacuum to a non-magnetic medium of relative permittivity 9. Then its' wavelength

1 Increase by $100 \mathrm{~m}$
2 Increases by $50 \mathrm{~m}$
3 Decreases by $50 \mathrm{~mm}$
4 Decreases by $100 \mathrm{~m}$
Electromagnetic Wave

155537 In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$

1 \(1.52 \times 10^{-9} \mathrm{Jm}^{-3}\)
2 \(2.54 \times 10^{-19} \mathrm{Jm}^{-3}\)
3 \(3.54 \times 10^{-9} \mathrm{Jm}^{-3}\)
4 \(4.56 \times 10^{-9} \mathrm{Jm}^{-3}\)$
Electromagnetic Wave

155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is

1 $2 \mathrm{~m}^{-1}$
2 $0.5 \mathrm{~m}^{-1}$
3 $6 \mathrm{~m}^{-1}$
4 $3 \mathrm{~m}^{-1}$
Electromagnetic Wave

155534 Assertion: The velocity of electromagnetic waves depends on electric and magnetic properties of the medium.
Reason: Velocity of electromagnetic waves in free space is constant.

1 If both Assertion and Reason are correct and reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion
3 If Assertion is correct but Reason is incorrect
4 If both the Assertion and Reason are incorrect.
Electromagnetic Wave

155535 The oscillating electric field of an electromagnetic wave is given by $E_{y}=30 \sin (2 \times$ $\left.10^{11} t+300 \pi x\right) V^{-1}$. Then, the value of wavelength of the electromagnetic wave is

1 $5.67 \times 10^{-3} \mathrm{~m}$
2 $6.67 \times 10^{-3} \mathrm{~m}$
3 $66.7 \times 10^{-3} \mathrm{~m}$
4 $7.66 \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155536 An electromagnetic wave of frequency $2 \mathrm{MHz}$ propagates from vacuum to a non-magnetic medium of relative permittivity 9. Then its' wavelength

1 Increase by $100 \mathrm{~m}$
2 Increases by $50 \mathrm{~m}$
3 Decreases by $50 \mathrm{~mm}$
4 Decreases by $100 \mathrm{~m}$
Electromagnetic Wave

155537 In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$

1 \(1.52 \times 10^{-9} \mathrm{Jm}^{-3}\)
2 \(2.54 \times 10^{-19} \mathrm{Jm}^{-3}\)
3 \(3.54 \times 10^{-9} \mathrm{Jm}^{-3}\)
4 \(4.56 \times 10^{-9} \mathrm{Jm}^{-3}\)$
Electromagnetic Wave

155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is

1 $2 \mathrm{~m}^{-1}$
2 $0.5 \mathrm{~m}^{-1}$
3 $6 \mathrm{~m}^{-1}$
4 $3 \mathrm{~m}^{-1}$
Electromagnetic Wave

155534 Assertion: The velocity of electromagnetic waves depends on electric and magnetic properties of the medium.
Reason: Velocity of electromagnetic waves in free space is constant.

1 If both Assertion and Reason are correct and reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion
3 If Assertion is correct but Reason is incorrect
4 If both the Assertion and Reason are incorrect.
Electromagnetic Wave

155535 The oscillating electric field of an electromagnetic wave is given by $E_{y}=30 \sin (2 \times$ $\left.10^{11} t+300 \pi x\right) V^{-1}$. Then, the value of wavelength of the electromagnetic wave is

1 $5.67 \times 10^{-3} \mathrm{~m}$
2 $6.67 \times 10^{-3} \mathrm{~m}$
3 $66.7 \times 10^{-3} \mathrm{~m}$
4 $7.66 \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155536 An electromagnetic wave of frequency $2 \mathrm{MHz}$ propagates from vacuum to a non-magnetic medium of relative permittivity 9. Then its' wavelength

1 Increase by $100 \mathrm{~m}$
2 Increases by $50 \mathrm{~m}$
3 Decreases by $50 \mathrm{~mm}$
4 Decreases by $100 \mathrm{~m}$
Electromagnetic Wave

155537 In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$

1 \(1.52 \times 10^{-9} \mathrm{Jm}^{-3}\)
2 \(2.54 \times 10^{-19} \mathrm{Jm}^{-3}\)
3 \(3.54 \times 10^{-9} \mathrm{Jm}^{-3}\)
4 \(4.56 \times 10^{-9} \mathrm{Jm}^{-3}\)$
Electromagnetic Wave

155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is

1 $2 \mathrm{~m}^{-1}$
2 $0.5 \mathrm{~m}^{-1}$
3 $6 \mathrm{~m}^{-1}$
4 $3 \mathrm{~m}^{-1}$
Electromagnetic Wave

155534 Assertion: The velocity of electromagnetic waves depends on electric and magnetic properties of the medium.
Reason: Velocity of electromagnetic waves in free space is constant.

1 If both Assertion and Reason are correct and reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion
3 If Assertion is correct but Reason is incorrect
4 If both the Assertion and Reason are incorrect.
Electromagnetic Wave

155535 The oscillating electric field of an electromagnetic wave is given by $E_{y}=30 \sin (2 \times$ $\left.10^{11} t+300 \pi x\right) V^{-1}$. Then, the value of wavelength of the electromagnetic wave is

1 $5.67 \times 10^{-3} \mathrm{~m}$
2 $6.67 \times 10^{-3} \mathrm{~m}$
3 $66.7 \times 10^{-3} \mathrm{~m}$
4 $7.66 \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155536 An electromagnetic wave of frequency $2 \mathrm{MHz}$ propagates from vacuum to a non-magnetic medium of relative permittivity 9. Then its' wavelength

1 Increase by $100 \mathrm{~m}$
2 Increases by $50 \mathrm{~m}$
3 Decreases by $50 \mathrm{~mm}$
4 Decreases by $100 \mathrm{~m}$
Electromagnetic Wave

155537 In a plane electromagnetic wave, the electric field oscillates with a frequency $2 \times 10^{10} \mathrm{~S}^{-1}$ and amplitude $40 \mathrm{Vm}^{-1}$, then the energy density due to electric field is
$\left(\varepsilon_{\mathbf{0}}=\mathbf{8 . 8 5} \times \mathbf{1 0}^{-\mathbf{- 1 2}} \mathbf{F m}^{-\mathbf{1}}\right)$

1 \(1.52 \times 10^{-9} \mathrm{Jm}^{-3}\)
2 \(2.54 \times 10^{-19} \mathrm{Jm}^{-3}\)
3 \(3.54 \times 10^{-9} \mathrm{Jm}^{-3}\)
4 \(4.56 \times 10^{-9} \mathrm{Jm}^{-3}\)$
Electromagnetic Wave

155538 The electric field associated with an electromagnetic wave in vacuum is given by $\overrightarrow{\mathbf{E}}=\hat{\mathbf{i}} 40 \cos \left(k z-6 \times 10^{8} \mathrm{t}\right)$, where $E, z$ and $t$ are volt $/ \mathrm{m}$, metre and second respectively. The value of wave vector $k$ is

1 $2 \mathrm{~m}^{-1}$
2 $0.5 \mathrm{~m}^{-1}$
3 $6 \mathrm{~m}^{-1}$
4 $3 \mathrm{~m}^{-1}$