DisplacementCurrent
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155529 If the magnetic field of a plane electromagnetic wave is given by
$5 \times 10^{-6} \sin \left(0.6 \times 10^{2} x+0.5 \times 10^{10} t\right) \text {, then the }$
speed of the wave is

1 $0.83 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $0.83 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3 $5.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4 $5.24 \times 10^{9} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155531 Let $E_{0}$ and $B_{0}$ denote the amplitude of electric and magnetic field of a plane electromagnetic wave in air. The magnitude of the average momentum transferred per unit area and per unit time to a totally absorbing surface is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{2} \mu_{0} \mathrm{~B}_{0}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}$
Electromagnetic Wave

155532 The number of photons falling per second on a completely darkened plate to produce a force of $6.62 \times 10^{-5} \mathrm{~N}$ is $\mathrm{n}$. If the wavelength of the light falling is $5 \times 10^{-7} \mathrm{~m}$, then $\mathrm{n}=\ldots \ldots \ldots \times 10^{22}$. (Take, $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 1
2 5
3 0.2
4 3.3
Electromagnetic Wave

155533 Find the average energy density corresponding to maximum electric field, if magnetic field in a plane electromagnetic wave is given by $B=200 \times 10^{-6} \sin \left[\left(4 \times 10^{15}\right)(t-x / c)\right]$

1 $1.6 \mathrm{~J} \mathrm{~m}^{-3}$
2 $0.16 \mathrm{~J} \mathrm{~m}^{-3}$
3 $0.016 \mathrm{~J} \mathrm{~m}^{-3}$
4 $0.0016 \mathrm{~J} \mathrm{~m}^{-3}$
Electromagnetic Wave

155529 If the magnetic field of a plane electromagnetic wave is given by
$5 \times 10^{-6} \sin \left(0.6 \times 10^{2} x+0.5 \times 10^{10} t\right) \text {, then the }$
speed of the wave is

1 $0.83 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $0.83 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3 $5.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4 $5.24 \times 10^{9} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155531 Let $E_{0}$ and $B_{0}$ denote the amplitude of electric and magnetic field of a plane electromagnetic wave in air. The magnitude of the average momentum transferred per unit area and per unit time to a totally absorbing surface is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{2} \mu_{0} \mathrm{~B}_{0}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}$
Electromagnetic Wave

155532 The number of photons falling per second on a completely darkened plate to produce a force of $6.62 \times 10^{-5} \mathrm{~N}$ is $\mathrm{n}$. If the wavelength of the light falling is $5 \times 10^{-7} \mathrm{~m}$, then $\mathrm{n}=\ldots \ldots \ldots \times 10^{22}$. (Take, $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 1
2 5
3 0.2
4 3.3
Electromagnetic Wave

155533 Find the average energy density corresponding to maximum electric field, if magnetic field in a plane electromagnetic wave is given by $B=200 \times 10^{-6} \sin \left[\left(4 \times 10^{15}\right)(t-x / c)\right]$

1 $1.6 \mathrm{~J} \mathrm{~m}^{-3}$
2 $0.16 \mathrm{~J} \mathrm{~m}^{-3}$
3 $0.016 \mathrm{~J} \mathrm{~m}^{-3}$
4 $0.0016 \mathrm{~J} \mathrm{~m}^{-3}$
Electromagnetic Wave

155529 If the magnetic field of a plane electromagnetic wave is given by
$5 \times 10^{-6} \sin \left(0.6 \times 10^{2} x+0.5 \times 10^{10} t\right) \text {, then the }$
speed of the wave is

1 $0.83 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $0.83 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3 $5.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4 $5.24 \times 10^{9} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155531 Let $E_{0}$ and $B_{0}$ denote the amplitude of electric and magnetic field of a plane electromagnetic wave in air. The magnitude of the average momentum transferred per unit area and per unit time to a totally absorbing surface is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{2} \mu_{0} \mathrm{~B}_{0}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}$
Electromagnetic Wave

155532 The number of photons falling per second on a completely darkened plate to produce a force of $6.62 \times 10^{-5} \mathrm{~N}$ is $\mathrm{n}$. If the wavelength of the light falling is $5 \times 10^{-7} \mathrm{~m}$, then $\mathrm{n}=\ldots \ldots \ldots \times 10^{22}$. (Take, $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 1
2 5
3 0.2
4 3.3
Electromagnetic Wave

155533 Find the average energy density corresponding to maximum electric field, if magnetic field in a plane electromagnetic wave is given by $B=200 \times 10^{-6} \sin \left[\left(4 \times 10^{15}\right)(t-x / c)\right]$

1 $1.6 \mathrm{~J} \mathrm{~m}^{-3}$
2 $0.16 \mathrm{~J} \mathrm{~m}^{-3}$
3 $0.016 \mathrm{~J} \mathrm{~m}^{-3}$
4 $0.0016 \mathrm{~J} \mathrm{~m}^{-3}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155529 If the magnetic field of a plane electromagnetic wave is given by
$5 \times 10^{-6} \sin \left(0.6 \times 10^{2} x+0.5 \times 10^{10} t\right) \text {, then the }$
speed of the wave is

1 $0.83 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $0.83 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3 $5.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4 $5.24 \times 10^{9} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155531 Let $E_{0}$ and $B_{0}$ denote the amplitude of electric and magnetic field of a plane electromagnetic wave in air. The magnitude of the average momentum transferred per unit area and per unit time to a totally absorbing surface is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{2} \mu_{0} \mathrm{~B}_{0}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}$
Electromagnetic Wave

155532 The number of photons falling per second on a completely darkened plate to produce a force of $6.62 \times 10^{-5} \mathrm{~N}$ is $\mathrm{n}$. If the wavelength of the light falling is $5 \times 10^{-7} \mathrm{~m}$, then $\mathrm{n}=\ldots \ldots \ldots \times 10^{22}$. (Take, $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 1
2 5
3 0.2
4 3.3
Electromagnetic Wave

155533 Find the average energy density corresponding to maximum electric field, if magnetic field in a plane electromagnetic wave is given by $B=200 \times 10^{-6} \sin \left[\left(4 \times 10^{15}\right)(t-x / c)\right]$

1 $1.6 \mathrm{~J} \mathrm{~m}^{-3}$
2 $0.16 \mathrm{~J} \mathrm{~m}^{-3}$
3 $0.016 \mathrm{~J} \mathrm{~m}^{-3}$
4 $0.0016 \mathrm{~J} \mathrm{~m}^{-3}$