DisplacementCurrent
Electromagnetic Wave

155491 Sun light falls normally on as surface of area 36 $\mathrm{cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is

1 $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
2 $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
3 $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
4 $0.06 \mathrm{~W} / \mathrm{cm}^{2}$
Electromagnetic Wave

155492 A beam of light travelling along $\mathrm{X}$-axis is described by the electric field $E_{y}=900 \sin \omega(t-$ $\mathrm{x} / \mathrm{c})$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be:
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ]

1 $1: 1$
2 $1: 10$
3 $10: 1$
4 $1: 2$
Electromagnetic Wave

155494 An EM wave propagating in $\mathbf{x}$-direction has a wavelength of $8 \mathrm{~mm}$. The electric field vibrating $y$-direction has maximum magnitude of $60 \mathrm{Vm}^{-1}$. Choose the correct equations for electric and magnetic field if the EM wave is propagating in vacuum.

1 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$
2 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
3 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
4 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left(x-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left(\mathrm{x}-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
Electromagnetic Wave

155495 If Electric field intensity of a uniform plane electro magnetic wave is given as
$E=-301.6 \sin (k z-\omega t) \hat{a}_{x}+452.4 \sin (k z-\omega t) \hat{a}_{y} \frac{V}{m} \text {. }$
Then, magnetic intensity $\mathrm{H}$ of this wave in $\mathrm{Am}^{-}$ 1 will be:
[Given: Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \quad$ Permeability of vacuum $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}\right]$

1 \(+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
2 \(+1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+1.5 \times 10^{-6}\) \((\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
3 \(-0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.2 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
4 \(-1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.5 \times 10^{-6}\) \(\sin (k z-\omega t) \hat{a}_x\)
Electromagnetic Wave

155496 The electromagnetic waves travel in a medium at a speed of $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The relative permeability of the medium is 1.0 . The relative permittivity of the medium will be :

1 2.25
2 4.25
3 6.25
4 8.25
Electromagnetic Wave

155491 Sun light falls normally on as surface of area 36 $\mathrm{cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is

1 $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
2 $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
3 $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
4 $0.06 \mathrm{~W} / \mathrm{cm}^{2}$
Electromagnetic Wave

155492 A beam of light travelling along $\mathrm{X}$-axis is described by the electric field $E_{y}=900 \sin \omega(t-$ $\mathrm{x} / \mathrm{c})$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be:
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ]

1 $1: 1$
2 $1: 10$
3 $10: 1$
4 $1: 2$
Electromagnetic Wave

155494 An EM wave propagating in $\mathbf{x}$-direction has a wavelength of $8 \mathrm{~mm}$. The electric field vibrating $y$-direction has maximum magnitude of $60 \mathrm{Vm}^{-1}$. Choose the correct equations for electric and magnetic field if the EM wave is propagating in vacuum.

1 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$
2 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
3 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
4 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left(x-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left(\mathrm{x}-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
Electromagnetic Wave

155495 If Electric field intensity of a uniform plane electro magnetic wave is given as
$E=-301.6 \sin (k z-\omega t) \hat{a}_{x}+452.4 \sin (k z-\omega t) \hat{a}_{y} \frac{V}{m} \text {. }$
Then, magnetic intensity $\mathrm{H}$ of this wave in $\mathrm{Am}^{-}$ 1 will be:
[Given: Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \quad$ Permeability of vacuum $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}\right]$

1 \(+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
2 \(+1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+1.5 \times 10^{-6}\) \((\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
3 \(-0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.2 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
4 \(-1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.5 \times 10^{-6}\) \(\sin (k z-\omega t) \hat{a}_x\)
Electromagnetic Wave

155496 The electromagnetic waves travel in a medium at a speed of $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The relative permeability of the medium is 1.0 . The relative permittivity of the medium will be :

1 2.25
2 4.25
3 6.25
4 8.25
Electromagnetic Wave

155491 Sun light falls normally on as surface of area 36 $\mathrm{cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is

1 $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
2 $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
3 $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
4 $0.06 \mathrm{~W} / \mathrm{cm}^{2}$
Electromagnetic Wave

155492 A beam of light travelling along $\mathrm{X}$-axis is described by the electric field $E_{y}=900 \sin \omega(t-$ $\mathrm{x} / \mathrm{c})$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be:
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ]

1 $1: 1$
2 $1: 10$
3 $10: 1$
4 $1: 2$
Electromagnetic Wave

155494 An EM wave propagating in $\mathbf{x}$-direction has a wavelength of $8 \mathrm{~mm}$. The electric field vibrating $y$-direction has maximum magnitude of $60 \mathrm{Vm}^{-1}$. Choose the correct equations for electric and magnetic field if the EM wave is propagating in vacuum.

1 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$
2 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
3 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
4 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left(x-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left(\mathrm{x}-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
Electromagnetic Wave

155495 If Electric field intensity of a uniform plane electro magnetic wave is given as
$E=-301.6 \sin (k z-\omega t) \hat{a}_{x}+452.4 \sin (k z-\omega t) \hat{a}_{y} \frac{V}{m} \text {. }$
Then, magnetic intensity $\mathrm{H}$ of this wave in $\mathrm{Am}^{-}$ 1 will be:
[Given: Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \quad$ Permeability of vacuum $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}\right]$

1 \(+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
2 \(+1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+1.5 \times 10^{-6}\) \((\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
3 \(-0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.2 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
4 \(-1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.5 \times 10^{-6}\) \(\sin (k z-\omega t) \hat{a}_x\)
Electromagnetic Wave

155496 The electromagnetic waves travel in a medium at a speed of $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The relative permeability of the medium is 1.0 . The relative permittivity of the medium will be :

1 2.25
2 4.25
3 6.25
4 8.25
Electromagnetic Wave

155491 Sun light falls normally on as surface of area 36 $\mathrm{cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is

1 $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
2 $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
3 $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
4 $0.06 \mathrm{~W} / \mathrm{cm}^{2}$
Electromagnetic Wave

155492 A beam of light travelling along $\mathrm{X}$-axis is described by the electric field $E_{y}=900 \sin \omega(t-$ $\mathrm{x} / \mathrm{c})$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be:
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ]

1 $1: 1$
2 $1: 10$
3 $10: 1$
4 $1: 2$
Electromagnetic Wave

155494 An EM wave propagating in $\mathbf{x}$-direction has a wavelength of $8 \mathrm{~mm}$. The electric field vibrating $y$-direction has maximum magnitude of $60 \mathrm{Vm}^{-1}$. Choose the correct equations for electric and magnetic field if the EM wave is propagating in vacuum.

1 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$
2 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
3 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
4 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left(x-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left(\mathrm{x}-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
Electromagnetic Wave

155495 If Electric field intensity of a uniform plane electro magnetic wave is given as
$E=-301.6 \sin (k z-\omega t) \hat{a}_{x}+452.4 \sin (k z-\omega t) \hat{a}_{y} \frac{V}{m} \text {. }$
Then, magnetic intensity $\mathrm{H}$ of this wave in $\mathrm{Am}^{-}$ 1 will be:
[Given: Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \quad$ Permeability of vacuum $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}\right]$

1 \(+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
2 \(+1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+1.5 \times 10^{-6}\) \((\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
3 \(-0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.2 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
4 \(-1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.5 \times 10^{-6}\) \(\sin (k z-\omega t) \hat{a}_x\)
Electromagnetic Wave

155496 The electromagnetic waves travel in a medium at a speed of $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The relative permeability of the medium is 1.0 . The relative permittivity of the medium will be :

1 2.25
2 4.25
3 6.25
4 8.25
Electromagnetic Wave

155491 Sun light falls normally on as surface of area 36 $\mathrm{cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is

1 $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
2 $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
3 $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
4 $0.06 \mathrm{~W} / \mathrm{cm}^{2}$
Electromagnetic Wave

155492 A beam of light travelling along $\mathrm{X}$-axis is described by the electric field $E_{y}=900 \sin \omega(t-$ $\mathrm{x} / \mathrm{c})$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be:
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ]

1 $1: 1$
2 $1: 10$
3 $10: 1$
4 $1: 2$
Electromagnetic Wave

155494 An EM wave propagating in $\mathbf{x}$-direction has a wavelength of $8 \mathrm{~mm}$. The electric field vibrating $y$-direction has maximum magnitude of $60 \mathrm{Vm}^{-1}$. Choose the correct equations for electric and magnetic field if the EM wave is propagating in vacuum.

1 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$
2 $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(x-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
3 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
4 $E_{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left(x-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{j}} \mathrm{Vm}^{-1}$
$\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left(\mathrm{x}-4 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
Electromagnetic Wave

155495 If Electric field intensity of a uniform plane electro magnetic wave is given as
$E=-301.6 \sin (k z-\omega t) \hat{a}_{x}+452.4 \sin (k z-\omega t) \hat{a}_{y} \frac{V}{m} \text {. }$
Then, magnetic intensity $\mathrm{H}$ of this wave in $\mathrm{Am}^{-}$ 1 will be:
[Given: Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \quad$ Permeability of vacuum $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}\right]$

1 \(+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
2 \(+1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}+1.5 \times 10^{-6}\) \((\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
3 \(-0.8 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.2 \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{x}}\)
4 \(-1.0 \times 10^{-6} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}}-1.5 \times 10^{-6}\) \(\sin (k z-\omega t) \hat{a}_x\)
Electromagnetic Wave

155496 The electromagnetic waves travel in a medium at a speed of $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The relative permeability of the medium is 1.0 . The relative permittivity of the medium will be :

1 2.25
2 4.25
3 6.25
4 8.25