DisplacementCurrent
Electromagnetic Wave

155479 For EM wave propagating along $x$ axis has $E_{\text {mas }}=30 \mathrm{~V} / \mathrm{m}$. What is maximum value of magnetic field?

1 $10^{-7}$ tesla
2 $10^{-8}$ tesla
3 $10^{-9}$ tesla
4 $10^{-6}$ tesla
Electromagnetic Wave

155481 A plane electromagnetic wave of frequency 20 $\mathrm{MHz}$ propagates in free space along $\mathrm{x}$ direction. At a particular space and time, $\overrightarrow{\mathbf{E}}=6.6 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$. what is $\overrightarrow{\mathrm{B}}$ at this point?

1 $-2.2 \times 10^{-8} \hat{\mathrm{i} T}$
2 $2.2 \times 10^{-8} \hat{\mathrm{k} T}$
3 $-2.2 \times 10^{-8} \hat{\mathrm{kT}}$
4 $2.2 \times 10^{-8} \hat{\mathrm{iT}}$
Electromagnetic Wave

155483 In $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{K}}$ represent electric field and propagation vectors of the $E M$ waves in vacuum, then magnetic field vector is given by: ( $\omega$-angular frequency):

1 $\frac{1}{\omega}(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
2 $\omega(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
3 $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
4 $\omega(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{K}})$
Electromagnetic Wave

155484 An electromagnetic wave is transporting energy in the negative $z$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $y$ direction. What will be the direction of the magnetic field of the wave at that point and instant?

1 Positive direction of $z$
2 Negative direction of $y$
3 Positive direction of $\mathrm{x}$
4 Negative direction of $\mathrm{x}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155479 For EM wave propagating along $x$ axis has $E_{\text {mas }}=30 \mathrm{~V} / \mathrm{m}$. What is maximum value of magnetic field?

1 $10^{-7}$ tesla
2 $10^{-8}$ tesla
3 $10^{-9}$ tesla
4 $10^{-6}$ tesla
Electromagnetic Wave

155481 A plane electromagnetic wave of frequency 20 $\mathrm{MHz}$ propagates in free space along $\mathrm{x}$ direction. At a particular space and time, $\overrightarrow{\mathbf{E}}=6.6 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$. what is $\overrightarrow{\mathrm{B}}$ at this point?

1 $-2.2 \times 10^{-8} \hat{\mathrm{i} T}$
2 $2.2 \times 10^{-8} \hat{\mathrm{k} T}$
3 $-2.2 \times 10^{-8} \hat{\mathrm{kT}}$
4 $2.2 \times 10^{-8} \hat{\mathrm{iT}}$
Electromagnetic Wave

155483 In $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{K}}$ represent electric field and propagation vectors of the $E M$ waves in vacuum, then magnetic field vector is given by: ( $\omega$-angular frequency):

1 $\frac{1}{\omega}(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
2 $\omega(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
3 $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
4 $\omega(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{K}})$
Electromagnetic Wave

155484 An electromagnetic wave is transporting energy in the negative $z$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $y$ direction. What will be the direction of the magnetic field of the wave at that point and instant?

1 Positive direction of $z$
2 Negative direction of $y$
3 Positive direction of $\mathrm{x}$
4 Negative direction of $\mathrm{x}$
Electromagnetic Wave

155479 For EM wave propagating along $x$ axis has $E_{\text {mas }}=30 \mathrm{~V} / \mathrm{m}$. What is maximum value of magnetic field?

1 $10^{-7}$ tesla
2 $10^{-8}$ tesla
3 $10^{-9}$ tesla
4 $10^{-6}$ tesla
Electromagnetic Wave

155481 A plane electromagnetic wave of frequency 20 $\mathrm{MHz}$ propagates in free space along $\mathrm{x}$ direction. At a particular space and time, $\overrightarrow{\mathbf{E}}=6.6 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$. what is $\overrightarrow{\mathrm{B}}$ at this point?

1 $-2.2 \times 10^{-8} \hat{\mathrm{i} T}$
2 $2.2 \times 10^{-8} \hat{\mathrm{k} T}$
3 $-2.2 \times 10^{-8} \hat{\mathrm{kT}}$
4 $2.2 \times 10^{-8} \hat{\mathrm{iT}}$
Electromagnetic Wave

155483 In $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{K}}$ represent electric field and propagation vectors of the $E M$ waves in vacuum, then magnetic field vector is given by: ( $\omega$-angular frequency):

1 $\frac{1}{\omega}(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
2 $\omega(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
3 $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
4 $\omega(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{K}})$
Electromagnetic Wave

155484 An electromagnetic wave is transporting energy in the negative $z$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $y$ direction. What will be the direction of the magnetic field of the wave at that point and instant?

1 Positive direction of $z$
2 Negative direction of $y$
3 Positive direction of $\mathrm{x}$
4 Negative direction of $\mathrm{x}$
Electromagnetic Wave

155479 For EM wave propagating along $x$ axis has $E_{\text {mas }}=30 \mathrm{~V} / \mathrm{m}$. What is maximum value of magnetic field?

1 $10^{-7}$ tesla
2 $10^{-8}$ tesla
3 $10^{-9}$ tesla
4 $10^{-6}$ tesla
Electromagnetic Wave

155481 A plane electromagnetic wave of frequency 20 $\mathrm{MHz}$ propagates in free space along $\mathrm{x}$ direction. At a particular space and time, $\overrightarrow{\mathbf{E}}=6.6 \hat{\mathbf{j}} \mathrm{V} / \mathrm{m}$. what is $\overrightarrow{\mathrm{B}}$ at this point?

1 $-2.2 \times 10^{-8} \hat{\mathrm{i} T}$
2 $2.2 \times 10^{-8} \hat{\mathrm{k} T}$
3 $-2.2 \times 10^{-8} \hat{\mathrm{kT}}$
4 $2.2 \times 10^{-8} \hat{\mathrm{iT}}$
Electromagnetic Wave

155483 In $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{K}}$ represent electric field and propagation vectors of the $E M$ waves in vacuum, then magnetic field vector is given by: ( $\omega$-angular frequency):

1 $\frac{1}{\omega}(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
2 $\omega(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
3 $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
4 $\omega(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{K}})$
Electromagnetic Wave

155484 An electromagnetic wave is transporting energy in the negative $z$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $y$ direction. What will be the direction of the magnetic field of the wave at that point and instant?

1 Positive direction of $z$
2 Negative direction of $y$
3 Positive direction of $\mathrm{x}$
4 Negative direction of $\mathrm{x}$