Energy Bands (Valance, Conduction, Energy Gap), Conductor Insulator and Semiconductor
Semiconductor Electronics Material Devices and Simple Circuits

150588 For a copper block, find the electric field which can give on an average \(1 \mathrm{eV}\) energy to a conduction electron. (The mean free path of conduction electrons in copper is given as \(4 \times\) \(10^{-8} \mathrm{~m}\) )

1 \(2.62 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
2 \(2.64 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
3 \(2.5 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
4 \(2.58 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
Semiconductor Electronics Material Devices and Simple Circuits

150604 A semiconductor has equal electron and hole concentration of \(2 \times 10^8 \mathrm{~m}^{-3}\). On doping with a certain impurity, the electron concentration increases to \(4 \times 10^{10} \mathrm{~m}^{-3}\), then the new hole concentration of the semiconductor is

1 \(10^6 \mathrm{~m}^{-3}\)
2 \(10^8 \mathrm{~m}^3\)
3 \(10^{10} \mathrm{~m}^{-3}\)
4 \(10^{12} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150607 The band gap in a semi-conductor is \(0.6 \mathrm{eV}\). The maximum wavelength of electromagnetic radiation which can create a hole-electron pair in this semiconductor is equal to
[Use hc \(=1242\) eV - nm]

1 \(2450 \mathrm{~nm}\)
2 \(1150 \mathrm{~nm}\)
3 \(2070 \mathrm{~nm}\)
4 \(1050 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits

150611 What is the maximum wavelength of electromagnetic radiation that create a electron-hole pair in material with band gap 0.7 eV?. Planck's constant \(4.136 \times 10^{-15} \mathrm{eV}\)-Sec, velocity of light \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\).

1 \(1773 \times 10^{-8} \mathrm{~m}\)
2 \(1773 \times 10^{-9} \mathrm{~m}\)
3 \(1873 \times 10^{-9} \mathrm{~m}\)
4 \(1873 \times 10^{-8} \mathrm{~m}\)
Semiconductor Electronics Material Devices and Simple Circuits

150612 In a p-type semiconductor, the concentration of holes is \(2 \times 10^{15} \mathbf{~ c m}^{-3}\). The intrinsic carrier concentration is \(2 \times 10^{10} \mathbf{c m}^{-3}\). The concentration of electrons will be

1 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
2 \(2 \times 10^5 \mathrm{~cm}^{-3}\)
3 \(2 \times 10^{15} \mathrm{~cm}^{-3}\)
4 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150588 For a copper block, find the electric field which can give on an average \(1 \mathrm{eV}\) energy to a conduction electron. (The mean free path of conduction electrons in copper is given as \(4 \times\) \(10^{-8} \mathrm{~m}\) )

1 \(2.62 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
2 \(2.64 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
3 \(2.5 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
4 \(2.58 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
Semiconductor Electronics Material Devices and Simple Circuits

150604 A semiconductor has equal electron and hole concentration of \(2 \times 10^8 \mathrm{~m}^{-3}\). On doping with a certain impurity, the electron concentration increases to \(4 \times 10^{10} \mathrm{~m}^{-3}\), then the new hole concentration of the semiconductor is

1 \(10^6 \mathrm{~m}^{-3}\)
2 \(10^8 \mathrm{~m}^3\)
3 \(10^{10} \mathrm{~m}^{-3}\)
4 \(10^{12} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150607 The band gap in a semi-conductor is \(0.6 \mathrm{eV}\). The maximum wavelength of electromagnetic radiation which can create a hole-electron pair in this semiconductor is equal to
[Use hc \(=1242\) eV - nm]

1 \(2450 \mathrm{~nm}\)
2 \(1150 \mathrm{~nm}\)
3 \(2070 \mathrm{~nm}\)
4 \(1050 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits

150611 What is the maximum wavelength of electromagnetic radiation that create a electron-hole pair in material with band gap 0.7 eV?. Planck's constant \(4.136 \times 10^{-15} \mathrm{eV}\)-Sec, velocity of light \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\).

1 \(1773 \times 10^{-8} \mathrm{~m}\)
2 \(1773 \times 10^{-9} \mathrm{~m}\)
3 \(1873 \times 10^{-9} \mathrm{~m}\)
4 \(1873 \times 10^{-8} \mathrm{~m}\)
Semiconductor Electronics Material Devices and Simple Circuits

150612 In a p-type semiconductor, the concentration of holes is \(2 \times 10^{15} \mathbf{~ c m}^{-3}\). The intrinsic carrier concentration is \(2 \times 10^{10} \mathbf{c m}^{-3}\). The concentration of electrons will be

1 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
2 \(2 \times 10^5 \mathrm{~cm}^{-3}\)
3 \(2 \times 10^{15} \mathrm{~cm}^{-3}\)
4 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150588 For a copper block, find the electric field which can give on an average \(1 \mathrm{eV}\) energy to a conduction electron. (The mean free path of conduction electrons in copper is given as \(4 \times\) \(10^{-8} \mathrm{~m}\) )

1 \(2.62 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
2 \(2.64 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
3 \(2.5 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
4 \(2.58 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
Semiconductor Electronics Material Devices and Simple Circuits

150604 A semiconductor has equal electron and hole concentration of \(2 \times 10^8 \mathrm{~m}^{-3}\). On doping with a certain impurity, the electron concentration increases to \(4 \times 10^{10} \mathrm{~m}^{-3}\), then the new hole concentration of the semiconductor is

1 \(10^6 \mathrm{~m}^{-3}\)
2 \(10^8 \mathrm{~m}^3\)
3 \(10^{10} \mathrm{~m}^{-3}\)
4 \(10^{12} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150607 The band gap in a semi-conductor is \(0.6 \mathrm{eV}\). The maximum wavelength of electromagnetic radiation which can create a hole-electron pair in this semiconductor is equal to
[Use hc \(=1242\) eV - nm]

1 \(2450 \mathrm{~nm}\)
2 \(1150 \mathrm{~nm}\)
3 \(2070 \mathrm{~nm}\)
4 \(1050 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits

150611 What is the maximum wavelength of electromagnetic radiation that create a electron-hole pair in material with band gap 0.7 eV?. Planck's constant \(4.136 \times 10^{-15} \mathrm{eV}\)-Sec, velocity of light \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\).

1 \(1773 \times 10^{-8} \mathrm{~m}\)
2 \(1773 \times 10^{-9} \mathrm{~m}\)
3 \(1873 \times 10^{-9} \mathrm{~m}\)
4 \(1873 \times 10^{-8} \mathrm{~m}\)
Semiconductor Electronics Material Devices and Simple Circuits

150612 In a p-type semiconductor, the concentration of holes is \(2 \times 10^{15} \mathbf{~ c m}^{-3}\). The intrinsic carrier concentration is \(2 \times 10^{10} \mathbf{c m}^{-3}\). The concentration of electrons will be

1 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
2 \(2 \times 10^5 \mathrm{~cm}^{-3}\)
3 \(2 \times 10^{15} \mathrm{~cm}^{-3}\)
4 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150588 For a copper block, find the electric field which can give on an average \(1 \mathrm{eV}\) energy to a conduction electron. (The mean free path of conduction electrons in copper is given as \(4 \times\) \(10^{-8} \mathrm{~m}\) )

1 \(2.62 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
2 \(2.64 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
3 \(2.5 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
4 \(2.58 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
Semiconductor Electronics Material Devices and Simple Circuits

150604 A semiconductor has equal electron and hole concentration of \(2 \times 10^8 \mathrm{~m}^{-3}\). On doping with a certain impurity, the electron concentration increases to \(4 \times 10^{10} \mathrm{~m}^{-3}\), then the new hole concentration of the semiconductor is

1 \(10^6 \mathrm{~m}^{-3}\)
2 \(10^8 \mathrm{~m}^3\)
3 \(10^{10} \mathrm{~m}^{-3}\)
4 \(10^{12} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150607 The band gap in a semi-conductor is \(0.6 \mathrm{eV}\). The maximum wavelength of electromagnetic radiation which can create a hole-electron pair in this semiconductor is equal to
[Use hc \(=1242\) eV - nm]

1 \(2450 \mathrm{~nm}\)
2 \(1150 \mathrm{~nm}\)
3 \(2070 \mathrm{~nm}\)
4 \(1050 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits

150611 What is the maximum wavelength of electromagnetic radiation that create a electron-hole pair in material with band gap 0.7 eV?. Planck's constant \(4.136 \times 10^{-15} \mathrm{eV}\)-Sec, velocity of light \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\).

1 \(1773 \times 10^{-8} \mathrm{~m}\)
2 \(1773 \times 10^{-9} \mathrm{~m}\)
3 \(1873 \times 10^{-9} \mathrm{~m}\)
4 \(1873 \times 10^{-8} \mathrm{~m}\)
Semiconductor Electronics Material Devices and Simple Circuits

150612 In a p-type semiconductor, the concentration of holes is \(2 \times 10^{15} \mathbf{~ c m}^{-3}\). The intrinsic carrier concentration is \(2 \times 10^{10} \mathbf{c m}^{-3}\). The concentration of electrons will be

1 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
2 \(2 \times 10^5 \mathrm{~cm}^{-3}\)
3 \(2 \times 10^{15} \mathrm{~cm}^{-3}\)
4 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150588 For a copper block, find the electric field which can give on an average \(1 \mathrm{eV}\) energy to a conduction electron. (The mean free path of conduction electrons in copper is given as \(4 \times\) \(10^{-8} \mathrm{~m}\) )

1 \(2.62 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
2 \(2.64 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
3 \(2.5 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
4 \(2.58 \times 10^7 \mathrm{~V} \mathrm{~m}^{-1}\)
Semiconductor Electronics Material Devices and Simple Circuits

150604 A semiconductor has equal electron and hole concentration of \(2 \times 10^8 \mathrm{~m}^{-3}\). On doping with a certain impurity, the electron concentration increases to \(4 \times 10^{10} \mathrm{~m}^{-3}\), then the new hole concentration of the semiconductor is

1 \(10^6 \mathrm{~m}^{-3}\)
2 \(10^8 \mathrm{~m}^3\)
3 \(10^{10} \mathrm{~m}^{-3}\)
4 \(10^{12} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150607 The band gap in a semi-conductor is \(0.6 \mathrm{eV}\). The maximum wavelength of electromagnetic radiation which can create a hole-electron pair in this semiconductor is equal to
[Use hc \(=1242\) eV - nm]

1 \(2450 \mathrm{~nm}\)
2 \(1150 \mathrm{~nm}\)
3 \(2070 \mathrm{~nm}\)
4 \(1050 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits

150611 What is the maximum wavelength of electromagnetic radiation that create a electron-hole pair in material with band gap 0.7 eV?. Planck's constant \(4.136 \times 10^{-15} \mathrm{eV}\)-Sec, velocity of light \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\).

1 \(1773 \times 10^{-8} \mathrm{~m}\)
2 \(1773 \times 10^{-9} \mathrm{~m}\)
3 \(1873 \times 10^{-9} \mathrm{~m}\)
4 \(1873 \times 10^{-8} \mathrm{~m}\)
Semiconductor Electronics Material Devices and Simple Circuits

150612 In a p-type semiconductor, the concentration of holes is \(2 \times 10^{15} \mathbf{~ c m}^{-3}\). The intrinsic carrier concentration is \(2 \times 10^{10} \mathbf{c m}^{-3}\). The concentration of electrons will be

1 \(1 \times 10^5 \mathrm{~cm}^{-3}\)
2 \(2 \times 10^5 \mathrm{~cm}^{-3}\)
3 \(2 \times 10^{15} \mathrm{~cm}^{-3}\)
4 \(1 \times 10^5 \mathrm{~cm}^{-3}\)