Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

148054 $\quad \mathrm{A} \mathrm{U}^{235}$ reactor generates power at a rate of $P$ producing $2 \times 10^{18}$ fissions per second. The energy released per fission is $185 \mathrm{MeV}$. The value of $P$ is

1 $59.2 \mathrm{MW}$
2 $370 \times 10^{18} \mathrm{MW}$
3 $0.59 \mathrm{MW}$
4 $370 \mathrm{MW}$
NUCLEAR PHYSICS

148055 If $200 \mathrm{MeV}$ of energy is released in the fission of 1 nucleus of ${ }_{92} \mathrm{U}^{23}$, the number of nuclei that undergo fission to produce energy of $10 \mathrm{KWh}$ in $1 \mathrm{~s}$

1 $11.25 \times 10^{18}$
2 $22.5 \times 10^{17}$
3 $11.25 \times 10^{17}$
4 $22.5 \times 10^{18}$
NUCLEAR PHYSICS

148057 If in a nuclear reactor using $U^{235}$ as fuel, the power output is $4.8 \mathrm{MW}$. The number of fissions per second is: [Energy released per fissions per fission of $\mathrm{U}^{235}=200 \mathrm{MeV}, \mathrm{l} \mathrm{eV}=\mathbf{1 . 6}$ $\left.\times 10^{-19} \mathrm{~J}\right]$

1 $1.5 \times 10^{17}$
2 $3 \times 10^{19}$
3 $1.5 \times 10^{25}$
4 $3 \times 10^{25}$
NUCLEAR PHYSICS

148059 In each fission of $\mathrm{U}^{235}, 200 \mathrm{MeV}$ of energy is released. If a reactor produces $100 \mathrm{MW}$ power the rate of fission in it will be:

1 $3.125 \times 10^{18}$ per $\min$
2 $3.125 \times 10^{17}$ per sec
3 $3.125 \times 10^{17}$ per min
4 $3.125 \times 10^{18}$ per sec
NUCLEAR PHYSICS

148054 $\quad \mathrm{A} \mathrm{U}^{235}$ reactor generates power at a rate of $P$ producing $2 \times 10^{18}$ fissions per second. The energy released per fission is $185 \mathrm{MeV}$. The value of $P$ is

1 $59.2 \mathrm{MW}$
2 $370 \times 10^{18} \mathrm{MW}$
3 $0.59 \mathrm{MW}$
4 $370 \mathrm{MW}$
NUCLEAR PHYSICS

148055 If $200 \mathrm{MeV}$ of energy is released in the fission of 1 nucleus of ${ }_{92} \mathrm{U}^{23}$, the number of nuclei that undergo fission to produce energy of $10 \mathrm{KWh}$ in $1 \mathrm{~s}$

1 $11.25 \times 10^{18}$
2 $22.5 \times 10^{17}$
3 $11.25 \times 10^{17}$
4 $22.5 \times 10^{18}$
NUCLEAR PHYSICS

148057 If in a nuclear reactor using $U^{235}$ as fuel, the power output is $4.8 \mathrm{MW}$. The number of fissions per second is: [Energy released per fissions per fission of $\mathrm{U}^{235}=200 \mathrm{MeV}, \mathrm{l} \mathrm{eV}=\mathbf{1 . 6}$ $\left.\times 10^{-19} \mathrm{~J}\right]$

1 $1.5 \times 10^{17}$
2 $3 \times 10^{19}$
3 $1.5 \times 10^{25}$
4 $3 \times 10^{25}$
NUCLEAR PHYSICS

148059 In each fission of $\mathrm{U}^{235}, 200 \mathrm{MeV}$ of energy is released. If a reactor produces $100 \mathrm{MW}$ power the rate of fission in it will be:

1 $3.125 \times 10^{18}$ per $\min$
2 $3.125 \times 10^{17}$ per sec
3 $3.125 \times 10^{17}$ per min
4 $3.125 \times 10^{18}$ per sec
NUCLEAR PHYSICS

148054 $\quad \mathrm{A} \mathrm{U}^{235}$ reactor generates power at a rate of $P$ producing $2 \times 10^{18}$ fissions per second. The energy released per fission is $185 \mathrm{MeV}$. The value of $P$ is

1 $59.2 \mathrm{MW}$
2 $370 \times 10^{18} \mathrm{MW}$
3 $0.59 \mathrm{MW}$
4 $370 \mathrm{MW}$
NUCLEAR PHYSICS

148055 If $200 \mathrm{MeV}$ of energy is released in the fission of 1 nucleus of ${ }_{92} \mathrm{U}^{23}$, the number of nuclei that undergo fission to produce energy of $10 \mathrm{KWh}$ in $1 \mathrm{~s}$

1 $11.25 \times 10^{18}$
2 $22.5 \times 10^{17}$
3 $11.25 \times 10^{17}$
4 $22.5 \times 10^{18}$
NUCLEAR PHYSICS

148057 If in a nuclear reactor using $U^{235}$ as fuel, the power output is $4.8 \mathrm{MW}$. The number of fissions per second is: [Energy released per fissions per fission of $\mathrm{U}^{235}=200 \mathrm{MeV}, \mathrm{l} \mathrm{eV}=\mathbf{1 . 6}$ $\left.\times 10^{-19} \mathrm{~J}\right]$

1 $1.5 \times 10^{17}$
2 $3 \times 10^{19}$
3 $1.5 \times 10^{25}$
4 $3 \times 10^{25}$
NUCLEAR PHYSICS

148059 In each fission of $\mathrm{U}^{235}, 200 \mathrm{MeV}$ of energy is released. If a reactor produces $100 \mathrm{MW}$ power the rate of fission in it will be:

1 $3.125 \times 10^{18}$ per $\min$
2 $3.125 \times 10^{17}$ per sec
3 $3.125 \times 10^{17}$ per min
4 $3.125 \times 10^{18}$ per sec
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

148054 $\quad \mathrm{A} \mathrm{U}^{235}$ reactor generates power at a rate of $P$ producing $2 \times 10^{18}$ fissions per second. The energy released per fission is $185 \mathrm{MeV}$. The value of $P$ is

1 $59.2 \mathrm{MW}$
2 $370 \times 10^{18} \mathrm{MW}$
3 $0.59 \mathrm{MW}$
4 $370 \mathrm{MW}$
NUCLEAR PHYSICS

148055 If $200 \mathrm{MeV}$ of energy is released in the fission of 1 nucleus of ${ }_{92} \mathrm{U}^{23}$, the number of nuclei that undergo fission to produce energy of $10 \mathrm{KWh}$ in $1 \mathrm{~s}$

1 $11.25 \times 10^{18}$
2 $22.5 \times 10^{17}$
3 $11.25 \times 10^{17}$
4 $22.5 \times 10^{18}$
NUCLEAR PHYSICS

148057 If in a nuclear reactor using $U^{235}$ as fuel, the power output is $4.8 \mathrm{MW}$. The number of fissions per second is: [Energy released per fissions per fission of $\mathrm{U}^{235}=200 \mathrm{MeV}, \mathrm{l} \mathrm{eV}=\mathbf{1 . 6}$ $\left.\times 10^{-19} \mathrm{~J}\right]$

1 $1.5 \times 10^{17}$
2 $3 \times 10^{19}$
3 $1.5 \times 10^{25}$
4 $3 \times 10^{25}$
NUCLEAR PHYSICS

148059 In each fission of $\mathrm{U}^{235}, 200 \mathrm{MeV}$ of energy is released. If a reactor produces $100 \mathrm{MW}$ power the rate of fission in it will be:

1 $3.125 \times 10^{18}$ per $\min$
2 $3.125 \times 10^{17}$ per sec
3 $3.125 \times 10^{17}$ per min
4 $3.125 \times 10^{18}$ per sec