Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

148031 In a nuclear fusion reaction two nuclei, $\mathbf{A} \& \mathbf{B}$, fuse to produce a nucleus $C$, releasing an amount of energy $\Delta E$ in the process. If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \&$ $\Delta M_{C}$ respectively, then which of the following relations holds? Here, $\mathrm{c}$ is the speed of light

1 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
2 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
3 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
4 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

148032 The energy released by the fission of one uranium atom is $200 \mathrm{MeV}$. The number of fissions per second required to produce $3.2 \mathrm{~W}$ of power is
$\text { (Take } 1 \mathrm{eV}=1.6 \times 10^{-19} \text { ) }$

1 $10^{7}$
2 $10^{10}$
3 $10^{15}$
4 $10^{11}$
NUCLEAR PHYSICS

148036 In a nuclear fusion reaction, ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}$, the repulsive potential energy between the two nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The temperature at which the gases must be heated to initiate the reaction is nearly (Boltzmann's constant $\mathrm{k}=\mathbf{1 . 3 8} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathrm{J} / \mathrm{K}$ ).

1 $10^{7} \mathrm{~K}$
2 $10^{5} \mathrm{~K}$
3 $10^{9} \mathrm{~K}$
4 $10^{3} \mathrm{~K}$
NUCLEAR PHYSICS

148037 At any instant two elements $X_{1}$ and $X_{2}$ have same number of radioactive atoms. If the decay constant of $X_{1}$ and $X_{2}$ are $10 \lambda$ and $\lambda$ respectively, then the time when the ratio of their atoms becomes $\frac{1}{\mathrm{e}}$ respectively will be:

1 $\frac{1}{11 \lambda}$
2 $\frac{1}{9 \lambda}$
3 $\frac{1}{6 \lambda}$
4 $\frac{1}{5 \lambda}$
NUCLEAR PHYSICS

148031 In a nuclear fusion reaction two nuclei, $\mathbf{A} \& \mathbf{B}$, fuse to produce a nucleus $C$, releasing an amount of energy $\Delta E$ in the process. If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \&$ $\Delta M_{C}$ respectively, then which of the following relations holds? Here, $\mathrm{c}$ is the speed of light

1 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
2 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
3 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
4 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

148032 The energy released by the fission of one uranium atom is $200 \mathrm{MeV}$. The number of fissions per second required to produce $3.2 \mathrm{~W}$ of power is
$\text { (Take } 1 \mathrm{eV}=1.6 \times 10^{-19} \text { ) }$

1 $10^{7}$
2 $10^{10}$
3 $10^{15}$
4 $10^{11}$
NUCLEAR PHYSICS

148036 In a nuclear fusion reaction, ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}$, the repulsive potential energy between the two nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The temperature at which the gases must be heated to initiate the reaction is nearly (Boltzmann's constant $\mathrm{k}=\mathbf{1 . 3 8} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathrm{J} / \mathrm{K}$ ).

1 $10^{7} \mathrm{~K}$
2 $10^{5} \mathrm{~K}$
3 $10^{9} \mathrm{~K}$
4 $10^{3} \mathrm{~K}$
NUCLEAR PHYSICS

148037 At any instant two elements $X_{1}$ and $X_{2}$ have same number of radioactive atoms. If the decay constant of $X_{1}$ and $X_{2}$ are $10 \lambda$ and $\lambda$ respectively, then the time when the ratio of their atoms becomes $\frac{1}{\mathrm{e}}$ respectively will be:

1 $\frac{1}{11 \lambda}$
2 $\frac{1}{9 \lambda}$
3 $\frac{1}{6 \lambda}$
4 $\frac{1}{5 \lambda}$
NUCLEAR PHYSICS

148031 In a nuclear fusion reaction two nuclei, $\mathbf{A} \& \mathbf{B}$, fuse to produce a nucleus $C$, releasing an amount of energy $\Delta E$ in the process. If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \&$ $\Delta M_{C}$ respectively, then which of the following relations holds? Here, $\mathrm{c}$ is the speed of light

1 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
2 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
3 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
4 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

148032 The energy released by the fission of one uranium atom is $200 \mathrm{MeV}$. The number of fissions per second required to produce $3.2 \mathrm{~W}$ of power is
$\text { (Take } 1 \mathrm{eV}=1.6 \times 10^{-19} \text { ) }$

1 $10^{7}$
2 $10^{10}$
3 $10^{15}$
4 $10^{11}$
NUCLEAR PHYSICS

148036 In a nuclear fusion reaction, ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}$, the repulsive potential energy between the two nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The temperature at which the gases must be heated to initiate the reaction is nearly (Boltzmann's constant $\mathrm{k}=\mathbf{1 . 3 8} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathrm{J} / \mathrm{K}$ ).

1 $10^{7} \mathrm{~K}$
2 $10^{5} \mathrm{~K}$
3 $10^{9} \mathrm{~K}$
4 $10^{3} \mathrm{~K}$
NUCLEAR PHYSICS

148037 At any instant two elements $X_{1}$ and $X_{2}$ have same number of radioactive atoms. If the decay constant of $X_{1}$ and $X_{2}$ are $10 \lambda$ and $\lambda$ respectively, then the time when the ratio of their atoms becomes $\frac{1}{\mathrm{e}}$ respectively will be:

1 $\frac{1}{11 \lambda}$
2 $\frac{1}{9 \lambda}$
3 $\frac{1}{6 \lambda}$
4 $\frac{1}{5 \lambda}$
NUCLEAR PHYSICS

148031 In a nuclear fusion reaction two nuclei, $\mathbf{A} \& \mathbf{B}$, fuse to produce a nucleus $C$, releasing an amount of energy $\Delta E$ in the process. If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \&$ $\Delta M_{C}$ respectively, then which of the following relations holds? Here, $\mathrm{c}$ is the speed of light

1 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
2 $\Delta \mathrm{M}_{\mathrm{A}}+\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
3 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}-\Delta \mathrm{E} / \mathrm{c}^{2}$
4 $\Delta \mathrm{M}_{\mathrm{A}}-\Delta \mathrm{M}_{\mathrm{B}}=\Delta \mathrm{M}_{\mathrm{C}}+\Delta \mathrm{E} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

148032 The energy released by the fission of one uranium atom is $200 \mathrm{MeV}$. The number of fissions per second required to produce $3.2 \mathrm{~W}$ of power is
$\text { (Take } 1 \mathrm{eV}=1.6 \times 10^{-19} \text { ) }$

1 $10^{7}$
2 $10^{10}$
3 $10^{15}$
4 $10^{11}$
NUCLEAR PHYSICS

148036 In a nuclear fusion reaction, ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}$, the repulsive potential energy between the two nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The temperature at which the gases must be heated to initiate the reaction is nearly (Boltzmann's constant $\mathrm{k}=\mathbf{1 . 3 8} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathrm{J} / \mathrm{K}$ ).

1 $10^{7} \mathrm{~K}$
2 $10^{5} \mathrm{~K}$
3 $10^{9} \mathrm{~K}$
4 $10^{3} \mathrm{~K}$
NUCLEAR PHYSICS

148037 At any instant two elements $X_{1}$ and $X_{2}$ have same number of radioactive atoms. If the decay constant of $X_{1}$ and $X_{2}$ are $10 \lambda$ and $\lambda$ respectively, then the time when the ratio of their atoms becomes $\frac{1}{\mathrm{e}}$ respectively will be:

1 $\frac{1}{11 \lambda}$
2 $\frac{1}{9 \lambda}$
3 $\frac{1}{6 \lambda}$
4 $\frac{1}{5 \lambda}$