Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

148017 If the binding energy per nuclear in $\mathrm{Li}^{7}$ and $\mathrm{He}^{4}$ nuclei are respectively $5.60 \mathrm{Me} \mathrm{V}$ and 7.06 $\mathrm{MeV}$, then energy of reactor
$\mathbf{L i}^{7}+\mathbf{P} \rightarrow 2_{2} \mathbf{H e}^{4} \text { is }$

1 $19.6 \mathrm{MeV}$
2 $2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

148022 On bombardment of $\mathrm{U}^{235}$ by slow neutrons, 200 $\mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be

1 $5 \times 10^{16}$ per second
2 $10 \times 10^{16}$ per second
3 $15 \times 10^{16}$ per second
4 $20 \times 10^{16}$ per second
NUCLEAR PHYSICS

148018 Assume the graph of specific binding energy versus mass number is as shown in the figure. Using this graph, select the correct choice from the following

1 Fusion of two nuclei of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy
2 Fusion of two nuclei of mass number lying in the range of $51 \lt \mathrm{A} \lt 100$ will release energy
3 Fusion of two nuclei of mass number lying in the range of $1 \lt \mathrm{A} \lt 50$ will release energy
4 Fission of the nucleus of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy when broken into two fragments
NUCLEAR PHYSICS

148024 In the fission of uranium, $0.5 \mathrm{~g}$ mass is decayed, then how much energy will be obtained by it?

1 1.25 kilo watt hour
2 $1.25 \times 10^{7}$ kilo watt hour
3 0.25 kilo watt hour
4 $1.25 \times 10^{4}$ kilo watt hour
NUCLEAR PHYSICS

148026 In the nuclear fission reaction
${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}+{ }_{1}^{1} \mathrm{H}$
The nucleus ${ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}$ is

1 nitrogen of mass 16
2 nitrogen of mass 17
3 oxygen of mass 16
4 oxygen of mass 17
NUCLEAR PHYSICS

148017 If the binding energy per nuclear in $\mathrm{Li}^{7}$ and $\mathrm{He}^{4}$ nuclei are respectively $5.60 \mathrm{Me} \mathrm{V}$ and 7.06 $\mathrm{MeV}$, then energy of reactor
$\mathbf{L i}^{7}+\mathbf{P} \rightarrow 2_{2} \mathbf{H e}^{4} \text { is }$

1 $19.6 \mathrm{MeV}$
2 $2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

148022 On bombardment of $\mathrm{U}^{235}$ by slow neutrons, 200 $\mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be

1 $5 \times 10^{16}$ per second
2 $10 \times 10^{16}$ per second
3 $15 \times 10^{16}$ per second
4 $20 \times 10^{16}$ per second
NUCLEAR PHYSICS

148018 Assume the graph of specific binding energy versus mass number is as shown in the figure. Using this graph, select the correct choice from the following

1 Fusion of two nuclei of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy
2 Fusion of two nuclei of mass number lying in the range of $51 \lt \mathrm{A} \lt 100$ will release energy
3 Fusion of two nuclei of mass number lying in the range of $1 \lt \mathrm{A} \lt 50$ will release energy
4 Fission of the nucleus of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy when broken into two fragments
NUCLEAR PHYSICS

148024 In the fission of uranium, $0.5 \mathrm{~g}$ mass is decayed, then how much energy will be obtained by it?

1 1.25 kilo watt hour
2 $1.25 \times 10^{7}$ kilo watt hour
3 0.25 kilo watt hour
4 $1.25 \times 10^{4}$ kilo watt hour
NUCLEAR PHYSICS

148026 In the nuclear fission reaction
${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}+{ }_{1}^{1} \mathrm{H}$
The nucleus ${ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}$ is

1 nitrogen of mass 16
2 nitrogen of mass 17
3 oxygen of mass 16
4 oxygen of mass 17
NUCLEAR PHYSICS

148017 If the binding energy per nuclear in $\mathrm{Li}^{7}$ and $\mathrm{He}^{4}$ nuclei are respectively $5.60 \mathrm{Me} \mathrm{V}$ and 7.06 $\mathrm{MeV}$, then energy of reactor
$\mathbf{L i}^{7}+\mathbf{P} \rightarrow 2_{2} \mathbf{H e}^{4} \text { is }$

1 $19.6 \mathrm{MeV}$
2 $2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

148022 On bombardment of $\mathrm{U}^{235}$ by slow neutrons, 200 $\mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be

1 $5 \times 10^{16}$ per second
2 $10 \times 10^{16}$ per second
3 $15 \times 10^{16}$ per second
4 $20 \times 10^{16}$ per second
NUCLEAR PHYSICS

148018 Assume the graph of specific binding energy versus mass number is as shown in the figure. Using this graph, select the correct choice from the following

1 Fusion of two nuclei of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy
2 Fusion of two nuclei of mass number lying in the range of $51 \lt \mathrm{A} \lt 100$ will release energy
3 Fusion of two nuclei of mass number lying in the range of $1 \lt \mathrm{A} \lt 50$ will release energy
4 Fission of the nucleus of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy when broken into two fragments
NUCLEAR PHYSICS

148024 In the fission of uranium, $0.5 \mathrm{~g}$ mass is decayed, then how much energy will be obtained by it?

1 1.25 kilo watt hour
2 $1.25 \times 10^{7}$ kilo watt hour
3 0.25 kilo watt hour
4 $1.25 \times 10^{4}$ kilo watt hour
NUCLEAR PHYSICS

148026 In the nuclear fission reaction
${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}+{ }_{1}^{1} \mathrm{H}$
The nucleus ${ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}$ is

1 nitrogen of mass 16
2 nitrogen of mass 17
3 oxygen of mass 16
4 oxygen of mass 17
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

148017 If the binding energy per nuclear in $\mathrm{Li}^{7}$ and $\mathrm{He}^{4}$ nuclei are respectively $5.60 \mathrm{Me} \mathrm{V}$ and 7.06 $\mathrm{MeV}$, then energy of reactor
$\mathbf{L i}^{7}+\mathbf{P} \rightarrow 2_{2} \mathbf{H e}^{4} \text { is }$

1 $19.6 \mathrm{MeV}$
2 $2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

148022 On bombardment of $\mathrm{U}^{235}$ by slow neutrons, 200 $\mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be

1 $5 \times 10^{16}$ per second
2 $10 \times 10^{16}$ per second
3 $15 \times 10^{16}$ per second
4 $20 \times 10^{16}$ per second
NUCLEAR PHYSICS

148018 Assume the graph of specific binding energy versus mass number is as shown in the figure. Using this graph, select the correct choice from the following

1 Fusion of two nuclei of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy
2 Fusion of two nuclei of mass number lying in the range of $51 \lt \mathrm{A} \lt 100$ will release energy
3 Fusion of two nuclei of mass number lying in the range of $1 \lt \mathrm{A} \lt 50$ will release energy
4 Fission of the nucleus of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy when broken into two fragments
NUCLEAR PHYSICS

148024 In the fission of uranium, $0.5 \mathrm{~g}$ mass is decayed, then how much energy will be obtained by it?

1 1.25 kilo watt hour
2 $1.25 \times 10^{7}$ kilo watt hour
3 0.25 kilo watt hour
4 $1.25 \times 10^{4}$ kilo watt hour
NUCLEAR PHYSICS

148026 In the nuclear fission reaction
${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}+{ }_{1}^{1} \mathrm{H}$
The nucleus ${ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}$ is

1 nitrogen of mass 16
2 nitrogen of mass 17
3 oxygen of mass 16
4 oxygen of mass 17
NUCLEAR PHYSICS

148017 If the binding energy per nuclear in $\mathrm{Li}^{7}$ and $\mathrm{He}^{4}$ nuclei are respectively $5.60 \mathrm{Me} \mathrm{V}$ and 7.06 $\mathrm{MeV}$, then energy of reactor
$\mathbf{L i}^{7}+\mathbf{P} \rightarrow 2_{2} \mathbf{H e}^{4} \text { is }$

1 $19.6 \mathrm{MeV}$
2 $2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

148022 On bombardment of $\mathrm{U}^{235}$ by slow neutrons, 200 $\mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be

1 $5 \times 10^{16}$ per second
2 $10 \times 10^{16}$ per second
3 $15 \times 10^{16}$ per second
4 $20 \times 10^{16}$ per second
NUCLEAR PHYSICS

148018 Assume the graph of specific binding energy versus mass number is as shown in the figure. Using this graph, select the correct choice from the following

1 Fusion of two nuclei of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy
2 Fusion of two nuclei of mass number lying in the range of $51 \lt \mathrm{A} \lt 100$ will release energy
3 Fusion of two nuclei of mass number lying in the range of $1 \lt \mathrm{A} \lt 50$ will release energy
4 Fission of the nucleus of mass number lying in the range of $100 \lt \mathrm{A} \lt 200$ will release energy when broken into two fragments
NUCLEAR PHYSICS

148024 In the fission of uranium, $0.5 \mathrm{~g}$ mass is decayed, then how much energy will be obtained by it?

1 1.25 kilo watt hour
2 $1.25 \times 10^{7}$ kilo watt hour
3 0.25 kilo watt hour
4 $1.25 \times 10^{4}$ kilo watt hour
NUCLEAR PHYSICS

148026 In the nuclear fission reaction
${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}+{ }_{1}^{1} \mathrm{H}$
The nucleus ${ }_{\mathrm{p}}^{\mathrm{q}} \mathrm{X}$ is

1 nitrogen of mass 16
2 nitrogen of mass 17
3 oxygen of mass 16
4 oxygen of mass 17