Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

147977 Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#

1 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$
2 ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3\left({ }_{0}^{1} \mathrm{n}\right)$
3 Uranium decay
4 None of the above
NUCLEAR PHYSICS

147989 If $200 \mathrm{MeV}$ energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce $1 \mathrm{~kW}$ power shall be [given $1 \mathrm{eV}=1.6 \times 10^{19} \mathrm{~J}$ ]

1 $3.125 \times 10^{13}$
2 $3.125 \times 10^{14}$
3 $3.125 \times 10^{15}$
4 $3.125 \times 10^{16}$
NUCLEAR PHYSICS

147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.

1 $1.6 \times 19^{3} \mathrm{yr}$
2 $1.5 \times 10^{4} \mathrm{yr}$
3 $1.867 \times 10^{9} \mathrm{yr}$
4 $2 \times 10^{5} \mathrm{yr}$
NUCLEAR PHYSICS

147996 An alpha nucleus of energy $\frac{1}{2} \mathrm{~m} v^{2}$ bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

1 $v^{2}$
2 $1 / \mathrm{m}$
3 $1 / v^{4}$
4 $1 / \mathrm{Ze}$
NUCLEAR PHYSICS

147997 ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes :

1 ${ }_{92}^{238} \mathrm{U}$
2 ${ }_{90}^{234} \mathrm{Th}$
3 ${ }_{92}^{235} \mathrm{U}$
4 ${ }_{93}^{237} \mathrm{~Np}$
NUCLEAR PHYSICS

147977 Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#

1 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$
2 ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3\left({ }_{0}^{1} \mathrm{n}\right)$
3 Uranium decay
4 None of the above
NUCLEAR PHYSICS

147989 If $200 \mathrm{MeV}$ energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce $1 \mathrm{~kW}$ power shall be [given $1 \mathrm{eV}=1.6 \times 10^{19} \mathrm{~J}$ ]

1 $3.125 \times 10^{13}$
2 $3.125 \times 10^{14}$
3 $3.125 \times 10^{15}$
4 $3.125 \times 10^{16}$
NUCLEAR PHYSICS

147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.

1 $1.6 \times 19^{3} \mathrm{yr}$
2 $1.5 \times 10^{4} \mathrm{yr}$
3 $1.867 \times 10^{9} \mathrm{yr}$
4 $2 \times 10^{5} \mathrm{yr}$
NUCLEAR PHYSICS

147996 An alpha nucleus of energy $\frac{1}{2} \mathrm{~m} v^{2}$ bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

1 $v^{2}$
2 $1 / \mathrm{m}$
3 $1 / v^{4}$
4 $1 / \mathrm{Ze}$
NUCLEAR PHYSICS

147997 ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes :

1 ${ }_{92}^{238} \mathrm{U}$
2 ${ }_{90}^{234} \mathrm{Th}$
3 ${ }_{92}^{235} \mathrm{U}$
4 ${ }_{93}^{237} \mathrm{~Np}$
NUCLEAR PHYSICS

147977 Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#

1 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$
2 ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3\left({ }_{0}^{1} \mathrm{n}\right)$
3 Uranium decay
4 None of the above
NUCLEAR PHYSICS

147989 If $200 \mathrm{MeV}$ energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce $1 \mathrm{~kW}$ power shall be [given $1 \mathrm{eV}=1.6 \times 10^{19} \mathrm{~J}$ ]

1 $3.125 \times 10^{13}$
2 $3.125 \times 10^{14}$
3 $3.125 \times 10^{15}$
4 $3.125 \times 10^{16}$
NUCLEAR PHYSICS

147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.

1 $1.6 \times 19^{3} \mathrm{yr}$
2 $1.5 \times 10^{4} \mathrm{yr}$
3 $1.867 \times 10^{9} \mathrm{yr}$
4 $2 \times 10^{5} \mathrm{yr}$
NUCLEAR PHYSICS

147996 An alpha nucleus of energy $\frac{1}{2} \mathrm{~m} v^{2}$ bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

1 $v^{2}$
2 $1 / \mathrm{m}$
3 $1 / v^{4}$
4 $1 / \mathrm{Ze}$
NUCLEAR PHYSICS

147997 ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes :

1 ${ }_{92}^{238} \mathrm{U}$
2 ${ }_{90}^{234} \mathrm{Th}$
3 ${ }_{92}^{235} \mathrm{U}$
4 ${ }_{93}^{237} \mathrm{~Np}$
NUCLEAR PHYSICS

147977 Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#

1 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$
2 ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3\left({ }_{0}^{1} \mathrm{n}\right)$
3 Uranium decay
4 None of the above
NUCLEAR PHYSICS

147989 If $200 \mathrm{MeV}$ energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce $1 \mathrm{~kW}$ power shall be [given $1 \mathrm{eV}=1.6 \times 10^{19} \mathrm{~J}$ ]

1 $3.125 \times 10^{13}$
2 $3.125 \times 10^{14}$
3 $3.125 \times 10^{15}$
4 $3.125 \times 10^{16}$
NUCLEAR PHYSICS

147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.

1 $1.6 \times 19^{3} \mathrm{yr}$
2 $1.5 \times 10^{4} \mathrm{yr}$
3 $1.867 \times 10^{9} \mathrm{yr}$
4 $2 \times 10^{5} \mathrm{yr}$
NUCLEAR PHYSICS

147996 An alpha nucleus of energy $\frac{1}{2} \mathrm{~m} v^{2}$ bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

1 $v^{2}$
2 $1 / \mathrm{m}$
3 $1 / v^{4}$
4 $1 / \mathrm{Ze}$
NUCLEAR PHYSICS

147997 ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes :

1 ${ }_{92}^{238} \mathrm{U}$
2 ${ }_{90}^{234} \mathrm{Th}$
3 ${ }_{92}^{235} \mathrm{U}$
4 ${ }_{93}^{237} \mathrm{~Np}$
NUCLEAR PHYSICS

147977 Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#

1 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$
2 ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3\left({ }_{0}^{1} \mathrm{n}\right)$
3 Uranium decay
4 None of the above
NUCLEAR PHYSICS

147989 If $200 \mathrm{MeV}$ energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce $1 \mathrm{~kW}$ power shall be [given $1 \mathrm{eV}=1.6 \times 10^{19} \mathrm{~J}$ ]

1 $3.125 \times 10^{13}$
2 $3.125 \times 10^{14}$
3 $3.125 \times 10^{15}$
4 $3.125 \times 10^{16}$
NUCLEAR PHYSICS

147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.

1 $1.6 \times 19^{3} \mathrm{yr}$
2 $1.5 \times 10^{4} \mathrm{yr}$
3 $1.867 \times 10^{9} \mathrm{yr}$
4 $2 \times 10^{5} \mathrm{yr}$
NUCLEAR PHYSICS

147996 An alpha nucleus of energy $\frac{1}{2} \mathrm{~m} v^{2}$ bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

1 $v^{2}$
2 $1 / \mathrm{m}$
3 $1 / v^{4}$
4 $1 / \mathrm{Ze}$
NUCLEAR PHYSICS

147997 ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes :

1 ${ }_{92}^{238} \mathrm{U}$
2 ${ }_{90}^{234} \mathrm{Th}$
3 ${ }_{92}^{235} \mathrm{U}$
4 ${ }_{93}^{237} \mathrm{~Np}$