Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

147968 If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} \mathrm{~J}$. Then, the numbers of nuclei required per second in a power plant of $16 \mathrm{~kW}$ is (assume efficiency of plant $=1 \%$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: UP CPMT-2001,AP EAMCET- 24 -09-2020] Shift - I
]#

1 $5 \times 10^{12}$
2 $5 \times 10^{14}$
3 $5 \times 10^{16}$
4 $5.12 \times 10^{16}$
NUCLEAR PHYSICS

147969 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $R_{\mathrm{A} I}$ then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is

1 $\frac{5}{3} \mathrm{R}_{\mathrm{A} l}$
2 $\frac{13}{53} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{A} l}$
4 $\frac{53}{13} \mathrm{R}_{\mathrm{A} l}$
NUCLEAR PHYSICS

147972 The energy released when one nucleus of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is $188 \mathrm{MeV}$. The energy releases when $100 \mathrm{~g}$ of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is

1 $3.55 \times 10^{12} \mathrm{~J}$
2 $7.71 \times 10^{12} \mathrm{~J}$
3 $3.55 \times 10^{13} \mathrm{~J}$
4 $7.71 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147976 In uranium radioactive series, initial nucleus ${ }^{238} U_{92}$ decays to final nucleus ${ }^{206} U_{82}$. In this process, the number of $\alpha$-particles and $\beta$ particles emitted are

1 8 and 3
2 16 and 6
3 16 and 3
4 8 and 6
NUCLEAR PHYSICS

147968 If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} \mathrm{~J}$. Then, the numbers of nuclei required per second in a power plant of $16 \mathrm{~kW}$ is (assume efficiency of plant $=1 \%$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: UP CPMT-2001,AP EAMCET- 24 -09-2020] Shift - I
]#

1 $5 \times 10^{12}$
2 $5 \times 10^{14}$
3 $5 \times 10^{16}$
4 $5.12 \times 10^{16}$
NUCLEAR PHYSICS

147969 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $R_{\mathrm{A} I}$ then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is

1 $\frac{5}{3} \mathrm{R}_{\mathrm{A} l}$
2 $\frac{13}{53} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{A} l}$
4 $\frac{53}{13} \mathrm{R}_{\mathrm{A} l}$
NUCLEAR PHYSICS

147972 The energy released when one nucleus of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is $188 \mathrm{MeV}$. The energy releases when $100 \mathrm{~g}$ of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is

1 $3.55 \times 10^{12} \mathrm{~J}$
2 $7.71 \times 10^{12} \mathrm{~J}$
3 $3.55 \times 10^{13} \mathrm{~J}$
4 $7.71 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147976 In uranium radioactive series, initial nucleus ${ }^{238} U_{92}$ decays to final nucleus ${ }^{206} U_{82}$. In this process, the number of $\alpha$-particles and $\beta$ particles emitted are

1 8 and 3
2 16 and 6
3 16 and 3
4 8 and 6
NUCLEAR PHYSICS

147968 If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} \mathrm{~J}$. Then, the numbers of nuclei required per second in a power plant of $16 \mathrm{~kW}$ is (assume efficiency of plant $=1 \%$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: UP CPMT-2001,AP EAMCET- 24 -09-2020] Shift - I
]#

1 $5 \times 10^{12}$
2 $5 \times 10^{14}$
3 $5 \times 10^{16}$
4 $5.12 \times 10^{16}$
NUCLEAR PHYSICS

147969 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $R_{\mathrm{A} I}$ then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is

1 $\frac{5}{3} \mathrm{R}_{\mathrm{A} l}$
2 $\frac{13}{53} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{A} l}$
4 $\frac{53}{13} \mathrm{R}_{\mathrm{A} l}$
NUCLEAR PHYSICS

147972 The energy released when one nucleus of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is $188 \mathrm{MeV}$. The energy releases when $100 \mathrm{~g}$ of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is

1 $3.55 \times 10^{12} \mathrm{~J}$
2 $7.71 \times 10^{12} \mathrm{~J}$
3 $3.55 \times 10^{13} \mathrm{~J}$
4 $7.71 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147976 In uranium radioactive series, initial nucleus ${ }^{238} U_{92}$ decays to final nucleus ${ }^{206} U_{82}$. In this process, the number of $\alpha$-particles and $\beta$ particles emitted are

1 8 and 3
2 16 and 6
3 16 and 3
4 8 and 6
NUCLEAR PHYSICS

147968 If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} \mathrm{~J}$. Then, the numbers of nuclei required per second in a power plant of $16 \mathrm{~kW}$ is (assume efficiency of plant $=1 \%$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: UP CPMT-2001,AP EAMCET- 24 -09-2020] Shift - I
]#

1 $5 \times 10^{12}$
2 $5 \times 10^{14}$
3 $5 \times 10^{16}$
4 $5.12 \times 10^{16}$
NUCLEAR PHYSICS

147969 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $R_{\mathrm{A} I}$ then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is

1 $\frac{5}{3} \mathrm{R}_{\mathrm{A} l}$
2 $\frac{13}{53} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{A} l}$
4 $\frac{53}{13} \mathrm{R}_{\mathrm{A} l}$
NUCLEAR PHYSICS

147972 The energy released when one nucleus of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is $188 \mathrm{MeV}$. The energy releases when $100 \mathrm{~g}$ of ${ }_{92} \mathrm{U}^{235}$ undergoes fission is

1 $3.55 \times 10^{12} \mathrm{~J}$
2 $7.71 \times 10^{12} \mathrm{~J}$
3 $3.55 \times 10^{13} \mathrm{~J}$
4 $7.71 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147976 In uranium radioactive series, initial nucleus ${ }^{238} U_{92}$ decays to final nucleus ${ }^{206} U_{82}$. In this process, the number of $\alpha$-particles and $\beta$ particles emitted are

1 8 and 3
2 16 and 6
3 16 and 3
4 8 and 6