147977
Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#
147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.
147977
Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#
147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.
147977
Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#
147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.
147977
Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#
147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.
147977
Which of the following is fusion process?
#[Qdiff: Hard, QCat: Numerical Based, examname: $=0.004 \mathrm{AMU}$
, Number of nuclei in $1 \mathrm{~kg}$ deuterium $=$
, $\frac{6.023 \times 10^{23}}{2} \times 1000$
, $=3.011 \times 10^{26} \text { nuclei }$
, Energy released $=\Delta \mathrm{mc}^{2}$
, $=\left(0.004 \times 931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right) \times \mathrm{c}^{2} \quad\left[\because 1 \mathrm{AMU}=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]$
, $=3.726 \mathrm{MeV}$
, Energy released per deuterium $=\frac{3.726}{2}$
, $=1.863 \mathrm{MeV}$
, Energy released per $1 \mathrm{~kg}$ deuterium $=3.011 \times 10^{26} \times$ 1.863
, $=5.6 \times 10^{26} \mathrm{MeV}$
, $=5.6 \times 10^{26} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$
, $=8.97 \times 10^{13} \mathrm{~J}$
, $\approx 9.0 \times 10^{13} \mathrm{~J}$
, 672. A $57600 \mathrm{~W}$ nuclear reactor has a nuclear fission rate of $10^{16}$ per second. If the energy released per fission is $200 \mathrm{MeV}$ the efficiency of this reactor is
, (a) 16
, (b) 22
, (c) 25
, (d) 18
, [TS EAMCET 02.05.2018,Shift-II]#
147993 In an ore containing uranium, the ratio of $\mathrm{U}^{238}$ to $\mathrm{Pb}^{206}$ is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of $U^{238}$. Take the halflife of $\mathrm{U}^{238}$ to be $4.5 \times 10^{9} \mathrm{yr}$.