Effect of Dielectric Charging and Discharging of Capacitor
Capacitance

166002 A parallel plate capacitor has area $2 \mathrm{~m}^{2}$ separated by 3 dielectric slabs. Their relative permittivity is $2,3,6$ and thickness is $0.4 \mathrm{~mm}$, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}$ respectively. The capacitance is

1 $5 \times 10^{-8}$ Farad
2 $11 \times 10^{-8}$ Farad
3 $2.95 \times 10^{-8}$ Farad
4 $10 \times 10^{-8}$ Farad
Capacitance

166003 A capacitor is connected to a battery of voltage V. Now a dielectric slab of dielectric constant $K$ is completely inserted between the plates, then the final charge on the capacitor will be:

1 $\frac{\varepsilon_{0} A}{d} V$
2 $\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
3 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{kd}} \mathrm{V}$
4 zero
Capacitance

166004 A capacitor of capacitance $9 \mathrm{nF}$ having dielectric slab of $\varepsilon_{\mathrm{r}}=2.4$, dielectric strength 20 $\mathrm{MV} / \mathrm{m}$ and P.D. $=20 \mathrm{~V}$. Calculate the area of plates.

1 $2.1 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $1.4 \times 10^{-4} \mathrm{~m}^{2}$
4 $2.4 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166005 A capacitor of capacitance $15 \mathrm{nF}$ have dielectric slab of dielectric constant 2.5 , electric field strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference 30 volt. Calculate the area of plate.

1 $6.7 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $8.0 \times 10^{-4} \mathrm{~m}^{2}$
4 $9.85 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166006 When capacitor is fully charged, find current drawn from the cell.

1 $2 \mathrm{~mA}$
2 $1 \mathrm{~mA}$
3 $3 \mathrm{~mA}$
4 $9 \mathrm{~mA}$
Capacitance

166002 A parallel plate capacitor has area $2 \mathrm{~m}^{2}$ separated by 3 dielectric slabs. Their relative permittivity is $2,3,6$ and thickness is $0.4 \mathrm{~mm}$, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}$ respectively. The capacitance is

1 $5 \times 10^{-8}$ Farad
2 $11 \times 10^{-8}$ Farad
3 $2.95 \times 10^{-8}$ Farad
4 $10 \times 10^{-8}$ Farad
Capacitance

166003 A capacitor is connected to a battery of voltage V. Now a dielectric slab of dielectric constant $K$ is completely inserted between the plates, then the final charge on the capacitor will be:

1 $\frac{\varepsilon_{0} A}{d} V$
2 $\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
3 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{kd}} \mathrm{V}$
4 zero
Capacitance

166004 A capacitor of capacitance $9 \mathrm{nF}$ having dielectric slab of $\varepsilon_{\mathrm{r}}=2.4$, dielectric strength 20 $\mathrm{MV} / \mathrm{m}$ and P.D. $=20 \mathrm{~V}$. Calculate the area of plates.

1 $2.1 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $1.4 \times 10^{-4} \mathrm{~m}^{2}$
4 $2.4 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166005 A capacitor of capacitance $15 \mathrm{nF}$ have dielectric slab of dielectric constant 2.5 , electric field strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference 30 volt. Calculate the area of plate.

1 $6.7 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $8.0 \times 10^{-4} \mathrm{~m}^{2}$
4 $9.85 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166006 When capacitor is fully charged, find current drawn from the cell.

1 $2 \mathrm{~mA}$
2 $1 \mathrm{~mA}$
3 $3 \mathrm{~mA}$
4 $9 \mathrm{~mA}$
Capacitance

166002 A parallel plate capacitor has area $2 \mathrm{~m}^{2}$ separated by 3 dielectric slabs. Their relative permittivity is $2,3,6$ and thickness is $0.4 \mathrm{~mm}$, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}$ respectively. The capacitance is

1 $5 \times 10^{-8}$ Farad
2 $11 \times 10^{-8}$ Farad
3 $2.95 \times 10^{-8}$ Farad
4 $10 \times 10^{-8}$ Farad
Capacitance

166003 A capacitor is connected to a battery of voltage V. Now a dielectric slab of dielectric constant $K$ is completely inserted between the plates, then the final charge on the capacitor will be:

1 $\frac{\varepsilon_{0} A}{d} V$
2 $\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
3 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{kd}} \mathrm{V}$
4 zero
Capacitance

166004 A capacitor of capacitance $9 \mathrm{nF}$ having dielectric slab of $\varepsilon_{\mathrm{r}}=2.4$, dielectric strength 20 $\mathrm{MV} / \mathrm{m}$ and P.D. $=20 \mathrm{~V}$. Calculate the area of plates.

1 $2.1 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $1.4 \times 10^{-4} \mathrm{~m}^{2}$
4 $2.4 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166005 A capacitor of capacitance $15 \mathrm{nF}$ have dielectric slab of dielectric constant 2.5 , electric field strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference 30 volt. Calculate the area of plate.

1 $6.7 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $8.0 \times 10^{-4} \mathrm{~m}^{2}$
4 $9.85 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166006 When capacitor is fully charged, find current drawn from the cell.

1 $2 \mathrm{~mA}$
2 $1 \mathrm{~mA}$
3 $3 \mathrm{~mA}$
4 $9 \mathrm{~mA}$
Capacitance

166002 A parallel plate capacitor has area $2 \mathrm{~m}^{2}$ separated by 3 dielectric slabs. Their relative permittivity is $2,3,6$ and thickness is $0.4 \mathrm{~mm}$, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}$ respectively. The capacitance is

1 $5 \times 10^{-8}$ Farad
2 $11 \times 10^{-8}$ Farad
3 $2.95 \times 10^{-8}$ Farad
4 $10 \times 10^{-8}$ Farad
Capacitance

166003 A capacitor is connected to a battery of voltage V. Now a dielectric slab of dielectric constant $K$ is completely inserted between the plates, then the final charge on the capacitor will be:

1 $\frac{\varepsilon_{0} A}{d} V$
2 $\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
3 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{kd}} \mathrm{V}$
4 zero
Capacitance

166004 A capacitor of capacitance $9 \mathrm{nF}$ having dielectric slab of $\varepsilon_{\mathrm{r}}=2.4$, dielectric strength 20 $\mathrm{MV} / \mathrm{m}$ and P.D. $=20 \mathrm{~V}$. Calculate the area of plates.

1 $2.1 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $1.4 \times 10^{-4} \mathrm{~m}^{2}$
4 $2.4 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166005 A capacitor of capacitance $15 \mathrm{nF}$ have dielectric slab of dielectric constant 2.5 , electric field strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference 30 volt. Calculate the area of plate.

1 $6.7 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $8.0 \times 10^{-4} \mathrm{~m}^{2}$
4 $9.85 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166006 When capacitor is fully charged, find current drawn from the cell.

1 $2 \mathrm{~mA}$
2 $1 \mathrm{~mA}$
3 $3 \mathrm{~mA}$
4 $9 \mathrm{~mA}$
Capacitance

166002 A parallel plate capacitor has area $2 \mathrm{~m}^{2}$ separated by 3 dielectric slabs. Their relative permittivity is $2,3,6$ and thickness is $0.4 \mathrm{~mm}$, $0.6 \mathrm{~mm}, 1.2 \mathrm{~mm}$ respectively. The capacitance is

1 $5 \times 10^{-8}$ Farad
2 $11 \times 10^{-8}$ Farad
3 $2.95 \times 10^{-8}$ Farad
4 $10 \times 10^{-8}$ Farad
Capacitance

166003 A capacitor is connected to a battery of voltage V. Now a dielectric slab of dielectric constant $K$ is completely inserted between the plates, then the final charge on the capacitor will be:

1 $\frac{\varepsilon_{0} A}{d} V$
2 $\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
3 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{kd}} \mathrm{V}$
4 zero
Capacitance

166004 A capacitor of capacitance $9 \mathrm{nF}$ having dielectric slab of $\varepsilon_{\mathrm{r}}=2.4$, dielectric strength 20 $\mathrm{MV} / \mathrm{m}$ and P.D. $=20 \mathrm{~V}$. Calculate the area of plates.

1 $2.1 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $1.4 \times 10^{-4} \mathrm{~m}^{2}$
4 $2.4 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166005 A capacitor of capacitance $15 \mathrm{nF}$ have dielectric slab of dielectric constant 2.5 , electric field strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference 30 volt. Calculate the area of plate.

1 $6.7 \times 10^{-4} \mathrm{~m}^{2}$
2 $4.2 \times 10^{-4} \mathrm{~m}^{2}$
3 $8.0 \times 10^{-4} \mathrm{~m}^{2}$
4 $9.85 \times 10^{-4} \mathrm{~m}^{2}$
Capacitance

166006 When capacitor is fully charged, find current drawn from the cell.

1 $2 \mathrm{~mA}$
2 $1 \mathrm{~mA}$
3 $3 \mathrm{~mA}$
4 $9 \mathrm{~mA}$