Effect of Dielectric Charging and Discharging of Capacitor
Capacitance

165986 A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three dielectric materials having dielectric constants $k_{1}, k_{2}$ and $k_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in the capacitor, then its dielectric constant $k$ is given by

1 $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+2 \mathrm{~K}_{3}$
2 $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+2 \mathrm{~K}_{3}$
3 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
4 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
Capacitance

165987 A spherical condenser has inner and outer spheres of radii a and $b$ respectively. The space between the two is filled with air. The difference between the capacities of two condensers formed when outer sphere is earthed and when inner sphere is earthed will be

1 Zero
2 $4 \pi \varepsilon_{0} \mathrm{a}$
3 $4 \pi \varepsilon_{0} \mathrm{~b}$
4 $4 \pi \varepsilon_{0} \mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right)$
Capacitance

165988 Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathrm{F}$. If the foils is folded with paper of thickness $0.15 \mathrm{~mm}$, dielectric constant of paper is 2.5 and width of paper is $400 \mathrm{~mm}$, the length of the foil will be

1 $0.34 \mathrm{~m}$
2 $1.33 \mathrm{~m}$
3 $13.4 \mathrm{~m}$
4 $33.9 \mathrm{~m}$
Capacitance

165990 In the condenser shown in the circuit is charged to $5 \mathrm{~V}$ and left in the circuit, in $12 \mathrm{~s}$ the charge on the condenser will become :

1 $\frac{10}{\mathrm{e}} \mathrm{C}$
2 $\frac{\mathrm{e}}{10} \mathrm{C}$
3 $\frac{10}{\mathrm{e}^{2}} \mathrm{C}$
4 $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
5 \(=2.718\)
Capacitance

165991 A capacitor having capacitance $1 \mu \mathrm{F}$ with air is filled with two dielectrics as shown. How many times capacitance will increase?

1 12
2 6
3 $8 / 3$
4 3
Capacitance

165986 A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three dielectric materials having dielectric constants $k_{1}, k_{2}$ and $k_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in the capacitor, then its dielectric constant $k$ is given by

1 $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+2 \mathrm{~K}_{3}$
2 $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+2 \mathrm{~K}_{3}$
3 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
4 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
Capacitance

165987 A spherical condenser has inner and outer spheres of radii a and $b$ respectively. The space between the two is filled with air. The difference between the capacities of two condensers formed when outer sphere is earthed and when inner sphere is earthed will be

1 Zero
2 $4 \pi \varepsilon_{0} \mathrm{a}$
3 $4 \pi \varepsilon_{0} \mathrm{~b}$
4 $4 \pi \varepsilon_{0} \mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right)$
Capacitance

165988 Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathrm{F}$. If the foils is folded with paper of thickness $0.15 \mathrm{~mm}$, dielectric constant of paper is 2.5 and width of paper is $400 \mathrm{~mm}$, the length of the foil will be

1 $0.34 \mathrm{~m}$
2 $1.33 \mathrm{~m}$
3 $13.4 \mathrm{~m}$
4 $33.9 \mathrm{~m}$
Capacitance

165990 In the condenser shown in the circuit is charged to $5 \mathrm{~V}$ and left in the circuit, in $12 \mathrm{~s}$ the charge on the condenser will become :

1 $\frac{10}{\mathrm{e}} \mathrm{C}$
2 $\frac{\mathrm{e}}{10} \mathrm{C}$
3 $\frac{10}{\mathrm{e}^{2}} \mathrm{C}$
4 $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
5 \(=2.718\)
Capacitance

165991 A capacitor having capacitance $1 \mu \mathrm{F}$ with air is filled with two dielectrics as shown. How many times capacitance will increase?

1 12
2 6
3 $8 / 3$
4 3
Capacitance

165986 A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three dielectric materials having dielectric constants $k_{1}, k_{2}$ and $k_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in the capacitor, then its dielectric constant $k$ is given by

1 $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+2 \mathrm{~K}_{3}$
2 $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+2 \mathrm{~K}_{3}$
3 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
4 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
Capacitance

165987 A spherical condenser has inner and outer spheres of radii a and $b$ respectively. The space between the two is filled with air. The difference between the capacities of two condensers formed when outer sphere is earthed and when inner sphere is earthed will be

1 Zero
2 $4 \pi \varepsilon_{0} \mathrm{a}$
3 $4 \pi \varepsilon_{0} \mathrm{~b}$
4 $4 \pi \varepsilon_{0} \mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right)$
Capacitance

165988 Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathrm{F}$. If the foils is folded with paper of thickness $0.15 \mathrm{~mm}$, dielectric constant of paper is 2.5 and width of paper is $400 \mathrm{~mm}$, the length of the foil will be

1 $0.34 \mathrm{~m}$
2 $1.33 \mathrm{~m}$
3 $13.4 \mathrm{~m}$
4 $33.9 \mathrm{~m}$
Capacitance

165990 In the condenser shown in the circuit is charged to $5 \mathrm{~V}$ and left in the circuit, in $12 \mathrm{~s}$ the charge on the condenser will become :

1 $\frac{10}{\mathrm{e}} \mathrm{C}$
2 $\frac{\mathrm{e}}{10} \mathrm{C}$
3 $\frac{10}{\mathrm{e}^{2}} \mathrm{C}$
4 $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
5 \(=2.718\)
Capacitance

165991 A capacitor having capacitance $1 \mu \mathrm{F}$ with air is filled with two dielectrics as shown. How many times capacitance will increase?

1 12
2 6
3 $8 / 3$
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165986 A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three dielectric materials having dielectric constants $k_{1}, k_{2}$ and $k_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in the capacitor, then its dielectric constant $k$ is given by

1 $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+2 \mathrm{~K}_{3}$
2 $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+2 \mathrm{~K}_{3}$
3 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
4 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
Capacitance

165987 A spherical condenser has inner and outer spheres of radii a and $b$ respectively. The space between the two is filled with air. The difference between the capacities of two condensers formed when outer sphere is earthed and when inner sphere is earthed will be

1 Zero
2 $4 \pi \varepsilon_{0} \mathrm{a}$
3 $4 \pi \varepsilon_{0} \mathrm{~b}$
4 $4 \pi \varepsilon_{0} \mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right)$
Capacitance

165988 Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathrm{F}$. If the foils is folded with paper of thickness $0.15 \mathrm{~mm}$, dielectric constant of paper is 2.5 and width of paper is $400 \mathrm{~mm}$, the length of the foil will be

1 $0.34 \mathrm{~m}$
2 $1.33 \mathrm{~m}$
3 $13.4 \mathrm{~m}$
4 $33.9 \mathrm{~m}$
Capacitance

165990 In the condenser shown in the circuit is charged to $5 \mathrm{~V}$ and left in the circuit, in $12 \mathrm{~s}$ the charge on the condenser will become :

1 $\frac{10}{\mathrm{e}} \mathrm{C}$
2 $\frac{\mathrm{e}}{10} \mathrm{C}$
3 $\frac{10}{\mathrm{e}^{2}} \mathrm{C}$
4 $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
5 \(=2.718\)
Capacitance

165991 A capacitor having capacitance $1 \mu \mathrm{F}$ with air is filled with two dielectrics as shown. How many times capacitance will increase?

1 12
2 6
3 $8 / 3$
4 3
Capacitance

165986 A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three dielectric materials having dielectric constants $k_{1}, k_{2}$ and $k_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in the capacitor, then its dielectric constant $k$ is given by

1 $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+2 \mathrm{~K}_{3}$
2 $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+2 \mathrm{~K}_{3}$
3 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
4 $\frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}}+\frac{1}{2 \mathrm{~K}_{3}}$
Capacitance

165987 A spherical condenser has inner and outer spheres of radii a and $b$ respectively. The space between the two is filled with air. The difference between the capacities of two condensers formed when outer sphere is earthed and when inner sphere is earthed will be

1 Zero
2 $4 \pi \varepsilon_{0} \mathrm{a}$
3 $4 \pi \varepsilon_{0} \mathrm{~b}$
4 $4 \pi \varepsilon_{0} \mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right)$
Capacitance

165988 Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathrm{F}$. If the foils is folded with paper of thickness $0.15 \mathrm{~mm}$, dielectric constant of paper is 2.5 and width of paper is $400 \mathrm{~mm}$, the length of the foil will be

1 $0.34 \mathrm{~m}$
2 $1.33 \mathrm{~m}$
3 $13.4 \mathrm{~m}$
4 $33.9 \mathrm{~m}$
Capacitance

165990 In the condenser shown in the circuit is charged to $5 \mathrm{~V}$ and left in the circuit, in $12 \mathrm{~s}$ the charge on the condenser will become :

1 $\frac{10}{\mathrm{e}} \mathrm{C}$
2 $\frac{\mathrm{e}}{10} \mathrm{C}$
3 $\frac{10}{\mathrm{e}^{2}} \mathrm{C}$
4 $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
5 \(=2.718\)
Capacitance

165991 A capacitor having capacitance $1 \mu \mathrm{F}$ with air is filled with two dielectrics as shown. How many times capacitance will increase?

1 12
2 6
3 $8 / 3$
4 3