Combination of Capacitor
Capacitance

165819 The equivalent capacitance between the points $A$ and $B$ in the following circuit is :

1 $1 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165820 When two conductors of charges and potentials $C_{1}, V_{1}$ and $C_{2}, V_{2}$ respectively are joined, the common potential will be:

1 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
2 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}^{2}+\mathrm{C}_{2} \mathrm{~V}_{2}^{2}}{\mathrm{~V}_{1}^{2}+\mathrm{V}_{2}^{2}}$
3 $\mathrm{C}_{1}+\mathrm{C}_{2}$
4 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Capacitance

165821 In the circuit shown, the potential difference across the $4.5 \mu \mathrm{F}$ capacitor is

1 6 volt
2 $\frac{8}{3}$ volt
3 4 volt
4 8 volt
Capacitance

165822 The potential differences that must be applied across the parallel and series combination of 3 identical capacitors are such that the energy stored in them becomes the same. The ratio of potential difference in parallel to series combination is

1 $\frac{1}{3}$
2 $\frac{1}{4}$
3 $\frac{1}{8}$
4 $\frac{1}{6}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165819 The equivalent capacitance between the points $A$ and $B$ in the following circuit is :

1 $1 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165820 When two conductors of charges and potentials $C_{1}, V_{1}$ and $C_{2}, V_{2}$ respectively are joined, the common potential will be:

1 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
2 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}^{2}+\mathrm{C}_{2} \mathrm{~V}_{2}^{2}}{\mathrm{~V}_{1}^{2}+\mathrm{V}_{2}^{2}}$
3 $\mathrm{C}_{1}+\mathrm{C}_{2}$
4 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Capacitance

165821 In the circuit shown, the potential difference across the $4.5 \mu \mathrm{F}$ capacitor is

1 6 volt
2 $\frac{8}{3}$ volt
3 4 volt
4 8 volt
Capacitance

165822 The potential differences that must be applied across the parallel and series combination of 3 identical capacitors are such that the energy stored in them becomes the same. The ratio of potential difference in parallel to series combination is

1 $\frac{1}{3}$
2 $\frac{1}{4}$
3 $\frac{1}{8}$
4 $\frac{1}{6}$
Capacitance

165819 The equivalent capacitance between the points $A$ and $B$ in the following circuit is :

1 $1 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165820 When two conductors of charges and potentials $C_{1}, V_{1}$ and $C_{2}, V_{2}$ respectively are joined, the common potential will be:

1 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
2 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}^{2}+\mathrm{C}_{2} \mathrm{~V}_{2}^{2}}{\mathrm{~V}_{1}^{2}+\mathrm{V}_{2}^{2}}$
3 $\mathrm{C}_{1}+\mathrm{C}_{2}$
4 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Capacitance

165821 In the circuit shown, the potential difference across the $4.5 \mu \mathrm{F}$ capacitor is

1 6 volt
2 $\frac{8}{3}$ volt
3 4 volt
4 8 volt
Capacitance

165822 The potential differences that must be applied across the parallel and series combination of 3 identical capacitors are such that the energy stored in them becomes the same. The ratio of potential difference in parallel to series combination is

1 $\frac{1}{3}$
2 $\frac{1}{4}$
3 $\frac{1}{8}$
4 $\frac{1}{6}$
Capacitance

165819 The equivalent capacitance between the points $A$ and $B$ in the following circuit is :

1 $1 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165820 When two conductors of charges and potentials $C_{1}, V_{1}$ and $C_{2}, V_{2}$ respectively are joined, the common potential will be:

1 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
2 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}^{2}+\mathrm{C}_{2} \mathrm{~V}_{2}^{2}}{\mathrm{~V}_{1}^{2}+\mathrm{V}_{2}^{2}}$
3 $\mathrm{C}_{1}+\mathrm{C}_{2}$
4 $\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Capacitance

165821 In the circuit shown, the potential difference across the $4.5 \mu \mathrm{F}$ capacitor is

1 6 volt
2 $\frac{8}{3}$ volt
3 4 volt
4 8 volt
Capacitance

165822 The potential differences that must be applied across the parallel and series combination of 3 identical capacitors are such that the energy stored in them becomes the same. The ratio of potential difference in parallel to series combination is

1 $\frac{1}{3}$
2 $\frac{1}{4}$
3 $\frac{1}{8}$
4 $\frac{1}{6}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here