Energy Stored in Capacitor
Capacitance

165694 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in figure. The DC voltmeter reads $200 \mathrm{~V}$. The charge on each plate of capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165696 A parallel plate condenser has a uniform electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $\mathrm{d}(\mathrm{m})$ and area of each plate is $\mathrm{A}\left(\mathrm{m}^{2}\right)$. The energy (joule) stored in the condenser is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
2 $\varepsilon_{0}$ EAd (c)
3 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
4 $\mathrm{E}^{2} \mathrm{Ad} / \varepsilon_{0}$
Capacitance

165697 Two identical capacitors $C_{1}$ and $C_{2}$ of equal capacitance are connected as shown in the circuit. Terminals a and $b$ of the key $k$ are connected to charge capacitor $C_{1}$ using battery of emf $V$ volt. Now, disconnecting a and $b$ the terminals $b$ and $c$ are connected. Due to this, what will be the percentage loss of energy?

1 $75 \%$
2 $0 \%$
3 $50 \%$
4 $25 \%$
Capacitance

165698 A capacitor of capacitance $6 \mu \mathrm{F}$ is charged upto $100 \mathrm{~V}$. The energy stored in the capacitor is

1 $0.6 \mathrm{~J}$
2 $0.06 \mathrm{~J}$
3 $0.03 \mathrm{~J}$
4 $0.3 \mathrm{~J}$
Capacitance

165694 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in figure. The DC voltmeter reads $200 \mathrm{~V}$. The charge on each plate of capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165696 A parallel plate condenser has a uniform electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $\mathrm{d}(\mathrm{m})$ and area of each plate is $\mathrm{A}\left(\mathrm{m}^{2}\right)$. The energy (joule) stored in the condenser is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
2 $\varepsilon_{0}$ EAd (c)
3 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
4 $\mathrm{E}^{2} \mathrm{Ad} / \varepsilon_{0}$
Capacitance

165697 Two identical capacitors $C_{1}$ and $C_{2}$ of equal capacitance are connected as shown in the circuit. Terminals a and $b$ of the key $k$ are connected to charge capacitor $C_{1}$ using battery of emf $V$ volt. Now, disconnecting a and $b$ the terminals $b$ and $c$ are connected. Due to this, what will be the percentage loss of energy?

1 $75 \%$
2 $0 \%$
3 $50 \%$
4 $25 \%$
Capacitance

165698 A capacitor of capacitance $6 \mu \mathrm{F}$ is charged upto $100 \mathrm{~V}$. The energy stored in the capacitor is

1 $0.6 \mathrm{~J}$
2 $0.06 \mathrm{~J}$
3 $0.03 \mathrm{~J}$
4 $0.3 \mathrm{~J}$
Capacitance

165694 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in figure. The DC voltmeter reads $200 \mathrm{~V}$. The charge on each plate of capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165696 A parallel plate condenser has a uniform electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $\mathrm{d}(\mathrm{m})$ and area of each plate is $\mathrm{A}\left(\mathrm{m}^{2}\right)$. The energy (joule) stored in the condenser is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
2 $\varepsilon_{0}$ EAd (c)
3 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
4 $\mathrm{E}^{2} \mathrm{Ad} / \varepsilon_{0}$
Capacitance

165697 Two identical capacitors $C_{1}$ and $C_{2}$ of equal capacitance are connected as shown in the circuit. Terminals a and $b$ of the key $k$ are connected to charge capacitor $C_{1}$ using battery of emf $V$ volt. Now, disconnecting a and $b$ the terminals $b$ and $c$ are connected. Due to this, what will be the percentage loss of energy?

1 $75 \%$
2 $0 \%$
3 $50 \%$
4 $25 \%$
Capacitance

165698 A capacitor of capacitance $6 \mu \mathrm{F}$ is charged upto $100 \mathrm{~V}$. The energy stored in the capacitor is

1 $0.6 \mathrm{~J}$
2 $0.06 \mathrm{~J}$
3 $0.03 \mathrm{~J}$
4 $0.3 \mathrm{~J}$
Capacitance

165694 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in figure. The DC voltmeter reads $200 \mathrm{~V}$. The charge on each plate of capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165696 A parallel plate condenser has a uniform electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $\mathrm{d}(\mathrm{m})$ and area of each plate is $\mathrm{A}\left(\mathrm{m}^{2}\right)$. The energy (joule) stored in the condenser is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
2 $\varepsilon_{0}$ EAd (c)
3 $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
4 $\mathrm{E}^{2} \mathrm{Ad} / \varepsilon_{0}$
Capacitance

165697 Two identical capacitors $C_{1}$ and $C_{2}$ of equal capacitance are connected as shown in the circuit. Terminals a and $b$ of the key $k$ are connected to charge capacitor $C_{1}$ using battery of emf $V$ volt. Now, disconnecting a and $b$ the terminals $b$ and $c$ are connected. Due to this, what will be the percentage loss of energy?

1 $75 \%$
2 $0 \%$
3 $50 \%$
4 $25 \%$
Capacitance

165698 A capacitor of capacitance $6 \mu \mathrm{F}$ is charged upto $100 \mathrm{~V}$. The energy stored in the capacitor is

1 $0.6 \mathrm{~J}$
2 $0.06 \mathrm{~J}$
3 $0.03 \mathrm{~J}$
4 $0.3 \mathrm{~J}$