Doppler Effect
WAVES

173064 A source of sound is travelling with a velocity $40 \mathrm{~km} / \mathrm{h}$ towards observer and emits sound of frequency $2000\mathrm{~Hz}$. If velocity of sound is $\mathbf{1 2 2 0}$ $\mathrm{km} / \mathrm{h}$, then what is the apparent frequency heard by an observer ?

1 $2210 \mathrm{~Hz}$
2 $1920 \mathrm{~Hz}$
3 $2068 \mathrm{~Hz}$
4 $2086 \mathrm{~Hz}$
WAVES

173066 A source and observer are approaching each other with $50 \mathrm{~ms}^{-1}$ velocity. What will be original frequency if the observer receives 400 cycle/s

1 $300 \mathrm{cycle} / \mathrm{s}$
2 $320 \mathrm{cycle} / \mathrm{s}$
3 $340 \mathrm{cycle} / \mathrm{s}$
4 $330 \mathrm{cycle} / \mathrm{s}$
WAVES

173067 A source is approaching a stationary observer with velocity $\left(\frac{1}{10}\right)^{\text {th }}$ that of sound. Ratio of observed and real frequencies will be

1 $\frac{9}{10}$
2 $\frac{11}{10}$
3 $\frac{10}{11}$
4 $\frac{10}{9}$
WAVES

173071 If siren emitting sound of frequency $500 \mathrm{~Hz}$ is going away from a stationary listener with a speed of $50 \mathrm{~m} / \mathrm{s}$, the frequency of sound heard directly from the siren is

1 $286.5 \mathrm{~Hz}$
2 $481 \mathrm{~Hz}$
3 $434.2 \mathrm{~Hz}$
4 $580 \mathrm{~Hz}$
WAVES

173064 A source of sound is travelling with a velocity $40 \mathrm{~km} / \mathrm{h}$ towards observer and emits sound of frequency $2000\mathrm{~Hz}$. If velocity of sound is $\mathbf{1 2 2 0}$ $\mathrm{km} / \mathrm{h}$, then what is the apparent frequency heard by an observer ?

1 $2210 \mathrm{~Hz}$
2 $1920 \mathrm{~Hz}$
3 $2068 \mathrm{~Hz}$
4 $2086 \mathrm{~Hz}$
WAVES

173066 A source and observer are approaching each other with $50 \mathrm{~ms}^{-1}$ velocity. What will be original frequency if the observer receives 400 cycle/s

1 $300 \mathrm{cycle} / \mathrm{s}$
2 $320 \mathrm{cycle} / \mathrm{s}$
3 $340 \mathrm{cycle} / \mathrm{s}$
4 $330 \mathrm{cycle} / \mathrm{s}$
WAVES

173067 A source is approaching a stationary observer with velocity $\left(\frac{1}{10}\right)^{\text {th }}$ that of sound. Ratio of observed and real frequencies will be

1 $\frac{9}{10}$
2 $\frac{11}{10}$
3 $\frac{10}{11}$
4 $\frac{10}{9}$
WAVES

173071 If siren emitting sound of frequency $500 \mathrm{~Hz}$ is going away from a stationary listener with a speed of $50 \mathrm{~m} / \mathrm{s}$, the frequency of sound heard directly from the siren is

1 $286.5 \mathrm{~Hz}$
2 $481 \mathrm{~Hz}$
3 $434.2 \mathrm{~Hz}$
4 $580 \mathrm{~Hz}$
WAVES

173064 A source of sound is travelling with a velocity $40 \mathrm{~km} / \mathrm{h}$ towards observer and emits sound of frequency $2000\mathrm{~Hz}$. If velocity of sound is $\mathbf{1 2 2 0}$ $\mathrm{km} / \mathrm{h}$, then what is the apparent frequency heard by an observer ?

1 $2210 \mathrm{~Hz}$
2 $1920 \mathrm{~Hz}$
3 $2068 \mathrm{~Hz}$
4 $2086 \mathrm{~Hz}$
WAVES

173066 A source and observer are approaching each other with $50 \mathrm{~ms}^{-1}$ velocity. What will be original frequency if the observer receives 400 cycle/s

1 $300 \mathrm{cycle} / \mathrm{s}$
2 $320 \mathrm{cycle} / \mathrm{s}$
3 $340 \mathrm{cycle} / \mathrm{s}$
4 $330 \mathrm{cycle} / \mathrm{s}$
WAVES

173067 A source is approaching a stationary observer with velocity $\left(\frac{1}{10}\right)^{\text {th }}$ that of sound. Ratio of observed and real frequencies will be

1 $\frac{9}{10}$
2 $\frac{11}{10}$
3 $\frac{10}{11}$
4 $\frac{10}{9}$
WAVES

173071 If siren emitting sound of frequency $500 \mathrm{~Hz}$ is going away from a stationary listener with a speed of $50 \mathrm{~m} / \mathrm{s}$, the frequency of sound heard directly from the siren is

1 $286.5 \mathrm{~Hz}$
2 $481 \mathrm{~Hz}$
3 $434.2 \mathrm{~Hz}$
4 $580 \mathrm{~Hz}$
WAVES

173064 A source of sound is travelling with a velocity $40 \mathrm{~km} / \mathrm{h}$ towards observer and emits sound of frequency $2000\mathrm{~Hz}$. If velocity of sound is $\mathbf{1 2 2 0}$ $\mathrm{km} / \mathrm{h}$, then what is the apparent frequency heard by an observer ?

1 $2210 \mathrm{~Hz}$
2 $1920 \mathrm{~Hz}$
3 $2068 \mathrm{~Hz}$
4 $2086 \mathrm{~Hz}$
WAVES

173066 A source and observer are approaching each other with $50 \mathrm{~ms}^{-1}$ velocity. What will be original frequency if the observer receives 400 cycle/s

1 $300 \mathrm{cycle} / \mathrm{s}$
2 $320 \mathrm{cycle} / \mathrm{s}$
3 $340 \mathrm{cycle} / \mathrm{s}$
4 $330 \mathrm{cycle} / \mathrm{s}$
WAVES

173067 A source is approaching a stationary observer with velocity $\left(\frac{1}{10}\right)^{\text {th }}$ that of sound. Ratio of observed and real frequencies will be

1 $\frac{9}{10}$
2 $\frac{11}{10}$
3 $\frac{10}{11}$
4 $\frac{10}{9}$
WAVES

173071 If siren emitting sound of frequency $500 \mathrm{~Hz}$ is going away from a stationary listener with a speed of $50 \mathrm{~m} / \mathrm{s}$, the frequency of sound heard directly from the siren is

1 $286.5 \mathrm{~Hz}$
2 $481 \mathrm{~Hz}$
3 $434.2 \mathrm{~Hz}$
4 $580 \mathrm{~Hz}$