Doppler Effect
WAVES

173035 If a source approaches and recedes from observer with same velocity, the ratio of frequencies (apparent) is $6: 5$, then velocity of source is : $\left(\mathrm{v}_{\mathrm{s}}=330 \mathrm{~m} / \mathrm{s}\right)$

1 $20 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $33 \mathrm{~m} / \mathrm{s}$
WAVES

173036 A source and an observer move away from each other, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the apparent frequency heard by the observer is $1840 \mathrm{~Hz}$, the actual frequency of the source is : (Velocity of sound in air $=\mathbf{3 4 0} \mathrm{m} / \mathrm{s}$ ):

1 $2486 \mathrm{~Hz}$
2 $2070 \mathrm{~Hz}$
3 $2134 \mathrm{~Hz}$
4 $1872 \mathrm{~Hz}$
WAVES

173037 Two car $A$ and $B$ approach a stationary observer from opposite sides as shown in fig. Observer hears no beats. If the frequency of the horn of the car B is $504 \mathrm{~Hz}$, the frequency of horn of car A will be.


$\mathrm{B}$

1 $529.2 \mathrm{~Hz}$
2 $295.2 \mathrm{~Hz}$
3 $440.5 \mathrm{~Hz}$
4 None of these
WAVES

173038 A whistle giving out $450 \mathrm{~Hz}$ approaches a stationary observes at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer (in $\mathrm{Hz}$ ) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 409
2 429
3 517
4 500
WAVES

173039 A police car moving at $30 \mathrm{~m} / \mathrm{s}$, chases a motorcyclist. The police man sounds his horn at $180 \mathrm{~Hz}$, while both of them move towards a stationary siren of frequency $160 \mathrm{~Hz}$. Calculate the speed of the motorcyclist, if it is given that he does not observes any beats (take, speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $40 \mathrm{~m} / \mathrm{s}$
4 $35 \mathrm{~m} / \mathrm{s}$
WAVES

173035 If a source approaches and recedes from observer with same velocity, the ratio of frequencies (apparent) is $6: 5$, then velocity of source is : $\left(\mathrm{v}_{\mathrm{s}}=330 \mathrm{~m} / \mathrm{s}\right)$

1 $20 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $33 \mathrm{~m} / \mathrm{s}$
WAVES

173036 A source and an observer move away from each other, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the apparent frequency heard by the observer is $1840 \mathrm{~Hz}$, the actual frequency of the source is : (Velocity of sound in air $=\mathbf{3 4 0} \mathrm{m} / \mathrm{s}$ ):

1 $2486 \mathrm{~Hz}$
2 $2070 \mathrm{~Hz}$
3 $2134 \mathrm{~Hz}$
4 $1872 \mathrm{~Hz}$
WAVES

173037 Two car $A$ and $B$ approach a stationary observer from opposite sides as shown in fig. Observer hears no beats. If the frequency of the horn of the car B is $504 \mathrm{~Hz}$, the frequency of horn of car A will be.


$\mathrm{B}$

1 $529.2 \mathrm{~Hz}$
2 $295.2 \mathrm{~Hz}$
3 $440.5 \mathrm{~Hz}$
4 None of these
WAVES

173038 A whistle giving out $450 \mathrm{~Hz}$ approaches a stationary observes at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer (in $\mathrm{Hz}$ ) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 409
2 429
3 517
4 500
WAVES

173039 A police car moving at $30 \mathrm{~m} / \mathrm{s}$, chases a motorcyclist. The police man sounds his horn at $180 \mathrm{~Hz}$, while both of them move towards a stationary siren of frequency $160 \mathrm{~Hz}$. Calculate the speed of the motorcyclist, if it is given that he does not observes any beats (take, speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $40 \mathrm{~m} / \mathrm{s}$
4 $35 \mathrm{~m} / \mathrm{s}$
WAVES

173035 If a source approaches and recedes from observer with same velocity, the ratio of frequencies (apparent) is $6: 5$, then velocity of source is : $\left(\mathrm{v}_{\mathrm{s}}=330 \mathrm{~m} / \mathrm{s}\right)$

1 $20 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $33 \mathrm{~m} / \mathrm{s}$
WAVES

173036 A source and an observer move away from each other, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the apparent frequency heard by the observer is $1840 \mathrm{~Hz}$, the actual frequency of the source is : (Velocity of sound in air $=\mathbf{3 4 0} \mathrm{m} / \mathrm{s}$ ):

1 $2486 \mathrm{~Hz}$
2 $2070 \mathrm{~Hz}$
3 $2134 \mathrm{~Hz}$
4 $1872 \mathrm{~Hz}$
WAVES

173037 Two car $A$ and $B$ approach a stationary observer from opposite sides as shown in fig. Observer hears no beats. If the frequency of the horn of the car B is $504 \mathrm{~Hz}$, the frequency of horn of car A will be.


$\mathrm{B}$

1 $529.2 \mathrm{~Hz}$
2 $295.2 \mathrm{~Hz}$
3 $440.5 \mathrm{~Hz}$
4 None of these
WAVES

173038 A whistle giving out $450 \mathrm{~Hz}$ approaches a stationary observes at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer (in $\mathrm{Hz}$ ) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 409
2 429
3 517
4 500
WAVES

173039 A police car moving at $30 \mathrm{~m} / \mathrm{s}$, chases a motorcyclist. The police man sounds his horn at $180 \mathrm{~Hz}$, while both of them move towards a stationary siren of frequency $160 \mathrm{~Hz}$. Calculate the speed of the motorcyclist, if it is given that he does not observes any beats (take, speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $40 \mathrm{~m} / \mathrm{s}$
4 $35 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

173035 If a source approaches and recedes from observer with same velocity, the ratio of frequencies (apparent) is $6: 5$, then velocity of source is : $\left(\mathrm{v}_{\mathrm{s}}=330 \mathrm{~m} / \mathrm{s}\right)$

1 $20 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $33 \mathrm{~m} / \mathrm{s}$
WAVES

173036 A source and an observer move away from each other, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the apparent frequency heard by the observer is $1840 \mathrm{~Hz}$, the actual frequency of the source is : (Velocity of sound in air $=\mathbf{3 4 0} \mathrm{m} / \mathrm{s}$ ):

1 $2486 \mathrm{~Hz}$
2 $2070 \mathrm{~Hz}$
3 $2134 \mathrm{~Hz}$
4 $1872 \mathrm{~Hz}$
WAVES

173037 Two car $A$ and $B$ approach a stationary observer from opposite sides as shown in fig. Observer hears no beats. If the frequency of the horn of the car B is $504 \mathrm{~Hz}$, the frequency of horn of car A will be.


$\mathrm{B}$

1 $529.2 \mathrm{~Hz}$
2 $295.2 \mathrm{~Hz}$
3 $440.5 \mathrm{~Hz}$
4 None of these
WAVES

173038 A whistle giving out $450 \mathrm{~Hz}$ approaches a stationary observes at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer (in $\mathrm{Hz}$ ) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 409
2 429
3 517
4 500
WAVES

173039 A police car moving at $30 \mathrm{~m} / \mathrm{s}$, chases a motorcyclist. The police man sounds his horn at $180 \mathrm{~Hz}$, while both of them move towards a stationary siren of frequency $160 \mathrm{~Hz}$. Calculate the speed of the motorcyclist, if it is given that he does not observes any beats (take, speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $40 \mathrm{~m} / \mathrm{s}$
4 $35 \mathrm{~m} / \mathrm{s}$
WAVES

173035 If a source approaches and recedes from observer with same velocity, the ratio of frequencies (apparent) is $6: 5$, then velocity of source is : $\left(\mathrm{v}_{\mathrm{s}}=330 \mathrm{~m} / \mathrm{s}\right)$

1 $20 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $33 \mathrm{~m} / \mathrm{s}$
WAVES

173036 A source and an observer move away from each other, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the apparent frequency heard by the observer is $1840 \mathrm{~Hz}$, the actual frequency of the source is : (Velocity of sound in air $=\mathbf{3 4 0} \mathrm{m} / \mathrm{s}$ ):

1 $2486 \mathrm{~Hz}$
2 $2070 \mathrm{~Hz}$
3 $2134 \mathrm{~Hz}$
4 $1872 \mathrm{~Hz}$
WAVES

173037 Two car $A$ and $B$ approach a stationary observer from opposite sides as shown in fig. Observer hears no beats. If the frequency of the horn of the car B is $504 \mathrm{~Hz}$, the frequency of horn of car A will be.


$\mathrm{B}$

1 $529.2 \mathrm{~Hz}$
2 $295.2 \mathrm{~Hz}$
3 $440.5 \mathrm{~Hz}$
4 None of these
WAVES

173038 A whistle giving out $450 \mathrm{~Hz}$ approaches a stationary observes at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer (in $\mathrm{Hz}$ ) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 409
2 429
3 517
4 500
WAVES

173039 A police car moving at $30 \mathrm{~m} / \mathrm{s}$, chases a motorcyclist. The police man sounds his horn at $180 \mathrm{~Hz}$, while both of them move towards a stationary siren of frequency $160 \mathrm{~Hz}$. Calculate the speed of the motorcyclist, if it is given that he does not observes any beats (take, speed of sound $=330 \mathrm{~m} / \mathrm{s}$ ).

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $40 \mathrm{~m} / \mathrm{s}$
4 $35 \mathrm{~m} / \mathrm{s}$