Super Position Principle of Wave
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172370 Two waves are given by $y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$. The phase difference between the two waves is

1 $\pi / 4$
2 $\pi$
3 $\pi / 8$
4 $\pi / 2$
WAVES

172371 If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point.
The amplitude of the resulting wave will be about

1 7
2 6
3 5
4 3.5
WAVES

172373 Two periodic waves of intensities $I_{1}, I_{2}$ pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is

1 $\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
2 $2\left(I_{1}+I_{2}\right)$
3 $\mathrm{I}_{1}+\mathrm{I}_{2}$
4 $\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
WAVES

172375 Two waves represented by $x_{1}=2 \sin (20 \pi t) \mathrm{m}$ and $x_{2}=2 \sin \left(20 \pi t+\frac{\pi}{3}\right) m$ are superimposed then the amplitude of the resultant wave.

1 $2 \sqrt{3} \mathrm{~m}$
2 $3 \sqrt{3} \mathrm{~m}$
3 $4 \sqrt{3} \mathrm{~m}$
4 $5 \sqrt{3} \mathrm{~m}$
WAVES

172370 Two waves are given by $y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$. The phase difference between the two waves is

1 $\pi / 4$
2 $\pi$
3 $\pi / 8$
4 $\pi / 2$
WAVES

172371 If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point.
The amplitude of the resulting wave will be about

1 7
2 6
3 5
4 3.5
WAVES

172373 Two periodic waves of intensities $I_{1}, I_{2}$ pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is

1 $\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
2 $2\left(I_{1}+I_{2}\right)$
3 $\mathrm{I}_{1}+\mathrm{I}_{2}$
4 $\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
WAVES

172375 Two waves represented by $x_{1}=2 \sin (20 \pi t) \mathrm{m}$ and $x_{2}=2 \sin \left(20 \pi t+\frac{\pi}{3}\right) m$ are superimposed then the amplitude of the resultant wave.

1 $2 \sqrt{3} \mathrm{~m}$
2 $3 \sqrt{3} \mathrm{~m}$
3 $4 \sqrt{3} \mathrm{~m}$
4 $5 \sqrt{3} \mathrm{~m}$
WAVES

172370 Two waves are given by $y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$. The phase difference between the two waves is

1 $\pi / 4$
2 $\pi$
3 $\pi / 8$
4 $\pi / 2$
WAVES

172371 If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point.
The amplitude of the resulting wave will be about

1 7
2 6
3 5
4 3.5
WAVES

172373 Two periodic waves of intensities $I_{1}, I_{2}$ pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is

1 $\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
2 $2\left(I_{1}+I_{2}\right)$
3 $\mathrm{I}_{1}+\mathrm{I}_{2}$
4 $\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
WAVES

172375 Two waves represented by $x_{1}=2 \sin (20 \pi t) \mathrm{m}$ and $x_{2}=2 \sin \left(20 \pi t+\frac{\pi}{3}\right) m$ are superimposed then the amplitude of the resultant wave.

1 $2 \sqrt{3} \mathrm{~m}$
2 $3 \sqrt{3} \mathrm{~m}$
3 $4 \sqrt{3} \mathrm{~m}$
4 $5 \sqrt{3} \mathrm{~m}$
WAVES

172370 Two waves are given by $y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$. The phase difference between the two waves is

1 $\pi / 4$
2 $\pi$
3 $\pi / 8$
4 $\pi / 2$
WAVES

172371 If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point.
The amplitude of the resulting wave will be about

1 7
2 6
3 5
4 3.5
WAVES

172373 Two periodic waves of intensities $I_{1}, I_{2}$ pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is

1 $\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
2 $2\left(I_{1}+I_{2}\right)$
3 $\mathrm{I}_{1}+\mathrm{I}_{2}$
4 $\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
WAVES

172375 Two waves represented by $x_{1}=2 \sin (20 \pi t) \mathrm{m}$ and $x_{2}=2 \sin \left(20 \pi t+\frac{\pi}{3}\right) m$ are superimposed then the amplitude of the resultant wave.

1 $2 \sqrt{3} \mathrm{~m}$
2 $3 \sqrt{3} \mathrm{~m}$
3 $4 \sqrt{3} \mathrm{~m}$
4 $5 \sqrt{3} \mathrm{~m}$