Wave and Wave characteristics
WAVES

172338 Equations of motion in the same direction are given by,
$\mathrm{y}_{1}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$
$\mathrm{y}_{2}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}-\theta)$
The amplitude of the medium particle will be

1 $2 \mathrm{a} \cos \theta$
2 $\sqrt{2} \mathrm{a} \cos \theta$
3 $4 \mathrm{a} \cos \theta / 2$
4 $\sqrt{2} \mathrm{a} \cos \theta / 2$
WAVES

172339 A progressive wave moving along $x$-axis is represented by $y=A \sin \left[\frac{2 \pi}{\lambda}(v t-x)\right]$. The wavelength $(\lambda)$ at which the maximum particle velocity is 3 times the wave velocity is

1 $\mathrm{A} / 3$
2 $2 \mathrm{~A} /(3 \pi)$
3 $\left(\frac{3}{4}\right) \pi \mathrm{A}$
4 $(2 / 3) \pi \mathrm{A}$
WAVES

172345 The equation of wave is
$y=1.0 \cos 2 \pi\left(\frac{t}{0.02}-\frac{x}{10}\right)$ where $t$ is in second.
The frequency of the wave is

1 $50 \mathrm{~Hz}$
2 $315 \mathrm{~Hz}$
3 $10 \mathrm{~Hz}$
4 $63 \mathrm{~Hz}$
WAVES

172347 What is the path difference between the waves $y_{1}=a \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $y_{2}=a \cos \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ ?

1 $\lambda$
2 $\frac{\lambda}{2}$
3 $\frac{\lambda}{4}$
4 $2 \lambda$
WAVES

172338 Equations of motion in the same direction are given by,
$\mathrm{y}_{1}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$
$\mathrm{y}_{2}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}-\theta)$
The amplitude of the medium particle will be

1 $2 \mathrm{a} \cos \theta$
2 $\sqrt{2} \mathrm{a} \cos \theta$
3 $4 \mathrm{a} \cos \theta / 2$
4 $\sqrt{2} \mathrm{a} \cos \theta / 2$
WAVES

172339 A progressive wave moving along $x$-axis is represented by $y=A \sin \left[\frac{2 \pi}{\lambda}(v t-x)\right]$. The wavelength $(\lambda)$ at which the maximum particle velocity is 3 times the wave velocity is

1 $\mathrm{A} / 3$
2 $2 \mathrm{~A} /(3 \pi)$
3 $\left(\frac{3}{4}\right) \pi \mathrm{A}$
4 $(2 / 3) \pi \mathrm{A}$
WAVES

172345 The equation of wave is
$y=1.0 \cos 2 \pi\left(\frac{t}{0.02}-\frac{x}{10}\right)$ where $t$ is in second.
The frequency of the wave is

1 $50 \mathrm{~Hz}$
2 $315 \mathrm{~Hz}$
3 $10 \mathrm{~Hz}$
4 $63 \mathrm{~Hz}$
WAVES

172347 What is the path difference between the waves $y_{1}=a \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $y_{2}=a \cos \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ ?

1 $\lambda$
2 $\frac{\lambda}{2}$
3 $\frac{\lambda}{4}$
4 $2 \lambda$
WAVES

172338 Equations of motion in the same direction are given by,
$\mathrm{y}_{1}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$
$\mathrm{y}_{2}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}-\theta)$
The amplitude of the medium particle will be

1 $2 \mathrm{a} \cos \theta$
2 $\sqrt{2} \mathrm{a} \cos \theta$
3 $4 \mathrm{a} \cos \theta / 2$
4 $\sqrt{2} \mathrm{a} \cos \theta / 2$
WAVES

172339 A progressive wave moving along $x$-axis is represented by $y=A \sin \left[\frac{2 \pi}{\lambda}(v t-x)\right]$. The wavelength $(\lambda)$ at which the maximum particle velocity is 3 times the wave velocity is

1 $\mathrm{A} / 3$
2 $2 \mathrm{~A} /(3 \pi)$
3 $\left(\frac{3}{4}\right) \pi \mathrm{A}$
4 $(2 / 3) \pi \mathrm{A}$
WAVES

172345 The equation of wave is
$y=1.0 \cos 2 \pi\left(\frac{t}{0.02}-\frac{x}{10}\right)$ where $t$ is in second.
The frequency of the wave is

1 $50 \mathrm{~Hz}$
2 $315 \mathrm{~Hz}$
3 $10 \mathrm{~Hz}$
4 $63 \mathrm{~Hz}$
WAVES

172347 What is the path difference between the waves $y_{1}=a \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $y_{2}=a \cos \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ ?

1 $\lambda$
2 $\frac{\lambda}{2}$
3 $\frac{\lambda}{4}$
4 $2 \lambda$
WAVES

172338 Equations of motion in the same direction are given by,
$\mathrm{y}_{1}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$
$\mathrm{y}_{2}=2 \mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}-\theta)$
The amplitude of the medium particle will be

1 $2 \mathrm{a} \cos \theta$
2 $\sqrt{2} \mathrm{a} \cos \theta$
3 $4 \mathrm{a} \cos \theta / 2$
4 $\sqrt{2} \mathrm{a} \cos \theta / 2$
WAVES

172339 A progressive wave moving along $x$-axis is represented by $y=A \sin \left[\frac{2 \pi}{\lambda}(v t-x)\right]$. The wavelength $(\lambda)$ at which the maximum particle velocity is 3 times the wave velocity is

1 $\mathrm{A} / 3$
2 $2 \mathrm{~A} /(3 \pi)$
3 $\left(\frac{3}{4}\right) \pi \mathrm{A}$
4 $(2 / 3) \pi \mathrm{A}$
WAVES

172345 The equation of wave is
$y=1.0 \cos 2 \pi\left(\frac{t}{0.02}-\frac{x}{10}\right)$ where $t$ is in second.
The frequency of the wave is

1 $50 \mathrm{~Hz}$
2 $315 \mathrm{~Hz}$
3 $10 \mathrm{~Hz}$
4 $63 \mathrm{~Hz}$
WAVES

172347 What is the path difference between the waves $y_{1}=a \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $y_{2}=a \cos \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ ?

1 $\lambda$
2 $\frac{\lambda}{2}$
3 $\frac{\lambda}{4}$
4 $2 \lambda$