Wave and Wave characteristics
WAVES

172322 The equation of a wave is given by $y=a$ sin $\left(100 t-\frac{x}{10}\right)$, where $x$ and $y$ are in metre and $t$ in second, then velocity of wave is

1 $0.1 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $100 \mathrm{~m} / \mathrm{s}$
4 $1000 \mathrm{~m} / \mathrm{s}$
WAVES

172324 A transverse wave propagating along $x$-axis is represented by $y(x, t)=8 \sin \left(0.5 \pi x-4 \pi t-\frac{\pi}{4}\right)$
Where, $x$ is in metre and $t$ is in second. The speed the wave is

1 $4 \pi \mathrm{m} / \mathrm{s}$
2 $0.5 \pi \mathrm{m} / \mathrm{s}$
3 $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
WAVES

172325 Two waves are represented by the equations $Y_{1}$ $=\mathbf{a} \sin (\omega t+\mathbf{k x}+0.57) \mathrm{m}$ and $Y_{2}=\mathbf{a} \cos (\omega t+$ kx) $m$, where $x$ is in metre and $t$ in second. The phase difference between them is

1 $1.26 \mathrm{rad}$
2 $1.57 \mathrm{rad}$
3 $0.57 \mathrm{rad}$
4 $1 \mathrm{rad}$
WAVES

172326 Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a $700 \mathrm{~Hz}$ acoustic wave as it enters brass from warm air

1 increases by a factor 20
2 increases by a factor 10
3 decreases by a factor 20
4 decreases by a factor 10
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172322 The equation of a wave is given by $y=a$ sin $\left(100 t-\frac{x}{10}\right)$, where $x$ and $y$ are in metre and $t$ in second, then velocity of wave is

1 $0.1 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $100 \mathrm{~m} / \mathrm{s}$
4 $1000 \mathrm{~m} / \mathrm{s}$
WAVES

172324 A transverse wave propagating along $x$-axis is represented by $y(x, t)=8 \sin \left(0.5 \pi x-4 \pi t-\frac{\pi}{4}\right)$
Where, $x$ is in metre and $t$ is in second. The speed the wave is

1 $4 \pi \mathrm{m} / \mathrm{s}$
2 $0.5 \pi \mathrm{m} / \mathrm{s}$
3 $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
WAVES

172325 Two waves are represented by the equations $Y_{1}$ $=\mathbf{a} \sin (\omega t+\mathbf{k x}+0.57) \mathrm{m}$ and $Y_{2}=\mathbf{a} \cos (\omega t+$ kx) $m$, where $x$ is in metre and $t$ in second. The phase difference between them is

1 $1.26 \mathrm{rad}$
2 $1.57 \mathrm{rad}$
3 $0.57 \mathrm{rad}$
4 $1 \mathrm{rad}$
WAVES

172326 Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a $700 \mathrm{~Hz}$ acoustic wave as it enters brass from warm air

1 increases by a factor 20
2 increases by a factor 10
3 decreases by a factor 20
4 decreases by a factor 10
WAVES

172322 The equation of a wave is given by $y=a$ sin $\left(100 t-\frac{x}{10}\right)$, where $x$ and $y$ are in metre and $t$ in second, then velocity of wave is

1 $0.1 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $100 \mathrm{~m} / \mathrm{s}$
4 $1000 \mathrm{~m} / \mathrm{s}$
WAVES

172324 A transverse wave propagating along $x$-axis is represented by $y(x, t)=8 \sin \left(0.5 \pi x-4 \pi t-\frac{\pi}{4}\right)$
Where, $x$ is in metre and $t$ is in second. The speed the wave is

1 $4 \pi \mathrm{m} / \mathrm{s}$
2 $0.5 \pi \mathrm{m} / \mathrm{s}$
3 $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
WAVES

172325 Two waves are represented by the equations $Y_{1}$ $=\mathbf{a} \sin (\omega t+\mathbf{k x}+0.57) \mathrm{m}$ and $Y_{2}=\mathbf{a} \cos (\omega t+$ kx) $m$, where $x$ is in metre and $t$ in second. The phase difference between them is

1 $1.26 \mathrm{rad}$
2 $1.57 \mathrm{rad}$
3 $0.57 \mathrm{rad}$
4 $1 \mathrm{rad}$
WAVES

172326 Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a $700 \mathrm{~Hz}$ acoustic wave as it enters brass from warm air

1 increases by a factor 20
2 increases by a factor 10
3 decreases by a factor 20
4 decreases by a factor 10
WAVES

172322 The equation of a wave is given by $y=a$ sin $\left(100 t-\frac{x}{10}\right)$, where $x$ and $y$ are in metre and $t$ in second, then velocity of wave is

1 $0.1 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $100 \mathrm{~m} / \mathrm{s}$
4 $1000 \mathrm{~m} / \mathrm{s}$
WAVES

172324 A transverse wave propagating along $x$-axis is represented by $y(x, t)=8 \sin \left(0.5 \pi x-4 \pi t-\frac{\pi}{4}\right)$
Where, $x$ is in metre and $t$ is in second. The speed the wave is

1 $4 \pi \mathrm{m} / \mathrm{s}$
2 $0.5 \pi \mathrm{m} / \mathrm{s}$
3 $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
WAVES

172325 Two waves are represented by the equations $Y_{1}$ $=\mathbf{a} \sin (\omega t+\mathbf{k x}+0.57) \mathrm{m}$ and $Y_{2}=\mathbf{a} \cos (\omega t+$ kx) $m$, where $x$ is in metre and $t$ in second. The phase difference between them is

1 $1.26 \mathrm{rad}$
2 $1.57 \mathrm{rad}$
3 $0.57 \mathrm{rad}$
4 $1 \mathrm{rad}$
WAVES

172326 Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a $700 \mathrm{~Hz}$ acoustic wave as it enters brass from warm air

1 increases by a factor 20
2 increases by a factor 10
3 decreases by a factor 20
4 decreases by a factor 10