Wave and Wave characteristics
WAVES

172318 A transverse wave is represented by the equation $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$
For what value of $\lambda$ is the maximum particle velocity equal to two times the wave velocity?

1 $\lambda=2 \pi y_{0}$
2 $\lambda=\frac{\pi y_{0}}{3}$
3 $\lambda=\frac{\pi y_{0}}{2}$
4 $\lambda=\pi y_{0}$
WAVES

172319 The equation of a sound wave is given as $y=0.005 \sin (62.4 x+316 t)$.
The wavelength of this wave is

1 0.4unit
2 0.3 unit
3 0.2unit
4 0.1unit
WAVES

172320 The phase difference between two waves, represented by
$y_{1}=10^{-6} \sin \left\{100 t+\left(\frac{x}{50}\right)+0.5\right\} m$
$y_{2}=10^{-6} \cos \left\{100 t+\left(\frac{x}{50}\right)\right\} m,$
Where, $x$ is expressed in metre and $t$ is expressed in second, is approximately

1 $1.07 \mathrm{rad}$
2 $2.07 \mathrm{rad}$
3 $0.5 \mathrm{rad}$
4 $1.5 \mathrm{rad}$
WAVES

172321 A wave of amplitude $\mathrm{a}=\mathbf{0 . 2 \mathrm { m }}$, velocity $\mathrm{v}=360$ $\mathrm{m} / \mathrm{s}$ and $\lambda$ wavelength $60 \mathrm{~m}$ is travelling along positive $x$-axis, then the correct expression for the wave is

1 $y=0.2 \sin 2 \pi\left(6 t+\frac{x}{60}\right)$
2 $y=0.2 \sin \pi\left(6 t+\frac{x}{60}\right)$
3 $y=0.2 \sin 2 \pi\left(6 t-\frac{x}{60}\right)$
4 $y=0.2 \sin \pi\left(6 t-\frac{x}{60}\right)$
WAVES

172318 A transverse wave is represented by the equation $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$
For what value of $\lambda$ is the maximum particle velocity equal to two times the wave velocity?

1 $\lambda=2 \pi y_{0}$
2 $\lambda=\frac{\pi y_{0}}{3}$
3 $\lambda=\frac{\pi y_{0}}{2}$
4 $\lambda=\pi y_{0}$
WAVES

172319 The equation of a sound wave is given as $y=0.005 \sin (62.4 x+316 t)$.
The wavelength of this wave is

1 0.4unit
2 0.3 unit
3 0.2unit
4 0.1unit
WAVES

172320 The phase difference between two waves, represented by
$y_{1}=10^{-6} \sin \left\{100 t+\left(\frac{x}{50}\right)+0.5\right\} m$
$y_{2}=10^{-6} \cos \left\{100 t+\left(\frac{x}{50}\right)\right\} m,$
Where, $x$ is expressed in metre and $t$ is expressed in second, is approximately

1 $1.07 \mathrm{rad}$
2 $2.07 \mathrm{rad}$
3 $0.5 \mathrm{rad}$
4 $1.5 \mathrm{rad}$
WAVES

172321 A wave of amplitude $\mathrm{a}=\mathbf{0 . 2 \mathrm { m }}$, velocity $\mathrm{v}=360$ $\mathrm{m} / \mathrm{s}$ and $\lambda$ wavelength $60 \mathrm{~m}$ is travelling along positive $x$-axis, then the correct expression for the wave is

1 $y=0.2 \sin 2 \pi\left(6 t+\frac{x}{60}\right)$
2 $y=0.2 \sin \pi\left(6 t+\frac{x}{60}\right)$
3 $y=0.2 \sin 2 \pi\left(6 t-\frac{x}{60}\right)$
4 $y=0.2 \sin \pi\left(6 t-\frac{x}{60}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172318 A transverse wave is represented by the equation $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$
For what value of $\lambda$ is the maximum particle velocity equal to two times the wave velocity?

1 $\lambda=2 \pi y_{0}$
2 $\lambda=\frac{\pi y_{0}}{3}$
3 $\lambda=\frac{\pi y_{0}}{2}$
4 $\lambda=\pi y_{0}$
WAVES

172319 The equation of a sound wave is given as $y=0.005 \sin (62.4 x+316 t)$.
The wavelength of this wave is

1 0.4unit
2 0.3 unit
3 0.2unit
4 0.1unit
WAVES

172320 The phase difference between two waves, represented by
$y_{1}=10^{-6} \sin \left\{100 t+\left(\frac{x}{50}\right)+0.5\right\} m$
$y_{2}=10^{-6} \cos \left\{100 t+\left(\frac{x}{50}\right)\right\} m,$
Where, $x$ is expressed in metre and $t$ is expressed in second, is approximately

1 $1.07 \mathrm{rad}$
2 $2.07 \mathrm{rad}$
3 $0.5 \mathrm{rad}$
4 $1.5 \mathrm{rad}$
WAVES

172321 A wave of amplitude $\mathrm{a}=\mathbf{0 . 2 \mathrm { m }}$, velocity $\mathrm{v}=360$ $\mathrm{m} / \mathrm{s}$ and $\lambda$ wavelength $60 \mathrm{~m}$ is travelling along positive $x$-axis, then the correct expression for the wave is

1 $y=0.2 \sin 2 \pi\left(6 t+\frac{x}{60}\right)$
2 $y=0.2 \sin \pi\left(6 t+\frac{x}{60}\right)$
3 $y=0.2 \sin 2 \pi\left(6 t-\frac{x}{60}\right)$
4 $y=0.2 \sin \pi\left(6 t-\frac{x}{60}\right)$
WAVES

172318 A transverse wave is represented by the equation $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$
For what value of $\lambda$ is the maximum particle velocity equal to two times the wave velocity?

1 $\lambda=2 \pi y_{0}$
2 $\lambda=\frac{\pi y_{0}}{3}$
3 $\lambda=\frac{\pi y_{0}}{2}$
4 $\lambda=\pi y_{0}$
WAVES

172319 The equation of a sound wave is given as $y=0.005 \sin (62.4 x+316 t)$.
The wavelength of this wave is

1 0.4unit
2 0.3 unit
3 0.2unit
4 0.1unit
WAVES

172320 The phase difference between two waves, represented by
$y_{1}=10^{-6} \sin \left\{100 t+\left(\frac{x}{50}\right)+0.5\right\} m$
$y_{2}=10^{-6} \cos \left\{100 t+\left(\frac{x}{50}\right)\right\} m,$
Where, $x$ is expressed in metre and $t$ is expressed in second, is approximately

1 $1.07 \mathrm{rad}$
2 $2.07 \mathrm{rad}$
3 $0.5 \mathrm{rad}$
4 $1.5 \mathrm{rad}$
WAVES

172321 A wave of amplitude $\mathrm{a}=\mathbf{0 . 2 \mathrm { m }}$, velocity $\mathrm{v}=360$ $\mathrm{m} / \mathrm{s}$ and $\lambda$ wavelength $60 \mathrm{~m}$ is travelling along positive $x$-axis, then the correct expression for the wave is

1 $y=0.2 \sin 2 \pi\left(6 t+\frac{x}{60}\right)$
2 $y=0.2 \sin \pi\left(6 t+\frac{x}{60}\right)$
3 $y=0.2 \sin 2 \pi\left(6 t-\frac{x}{60}\right)$
4 $y=0.2 \sin \pi\left(6 t-\frac{x}{60}\right)$