NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
WAVES
172305
In a medium in which a transverse progressive wave travelling, the phase difference between the points with a separation of $1.25 \mathrm{~cm}$ is $\pi / 4$. If the frequency of wave is $1000 \mathrm{~Hz}$, the velocity in the medium is.
1 $10^{4} \mathrm{~ms}^{-1}$
2 $125 \mathrm{~ms}^{-1}$
3 $100 \mathrm{~ms}^{-1}$
4 $10 \mathrm{~ms}^{-1}$
Explanation:
C We know that, Given that $\mathrm{f}=1000 \mathrm{~Hz}$ $\Delta \phi=\pi / 4, \Delta \mathrm{x}=1.25 \mathrm{~cm}=1.25 \times 10^{-2} \mathrm{~m}$ Relation between path difference and phase difference We know, $\Delta \phi=\frac{2 \pi \times \Delta \mathrm{x}}{\lambda}$ $\frac{\pi}{4}=\frac{2 \pi}{\lambda} \times 1.25 \times 10^{-2}$ $\lambda=0.1 \mathrm{~m}$ $\mathrm{v}=\mathrm{f} \lambda$ $\mathrm{v}=1000 \times 0.1$ $\mathrm{v}=100 \mathrm{~m} / \mathrm{sec}$
AP EAMCET(Medical)-2015
WAVES
172306
A progressive wave of frequency $500 \mathrm{~Hz}$ is travelling with a speed of $330 \mathrm{~m} / \mathrm{s}$ in air. The distance between the two points which have a phase difference of $30^{\circ}$ is
172308
A light wave and a sound wave same frequency $f$ and their wavelengths are respectively $\lambda_{L}$, and $\lambda_{S}$, then:
1 $\lambda_{\mathrm{L}}=\lambda_{\mathrm{S}}$
2 $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
3 $\lambda_{\mathrm{L}}<\lambda_{\mathrm{S}}$
4 $\lambda_{\mathrm{L}}=2 \lambda_{\mathrm{S}}$
Explanation:
B Given that Wave length of light wave $\lambda_{\mathrm{L}}=\frac{\mathrm{c}}{\mathrm{f}} \quad(\mathrm{c}=\text { velocity of light })$ And wave length of sound wave $\lambda_{\mathrm{s}}=\frac{\mathrm{v}}{\mathrm{f}} \quad(\mathrm{v}=\text { velocity of sound })$ Now, $\frac{\lambda_{L}}{\lambda_{S}}=\frac{c / f}{v / f}=\frac{c}{v}$ We know, $\mathrm{c}>>\mathrm{v}$ $\frac{\lambda_{\mathrm{L}}}{\lambda_{\mathrm{S}}}=\frac{\mathrm{c}}{\mathrm{v}}>1$ $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
AP EAMCET(Medical)-2005
WAVES
172312
Equation of progressive wave is given by $y=4 \sin \left[\pi\left(\frac{t}{5}-\frac{x}{9}\right)+\frac{\pi}{6}\right]$ Then, which of the following is correct ?
1 $\mathrm{v}=5 \mathrm{~cm}$
2 $\lambda=18 \mathrm{~cm}$
3 $\mathrm{a}=0.04 \mathrm{~cm}$
4 $\mathrm{f}=50 \mathrm{~Hz}$
Explanation:
B Given, progressive wave equation $\mathrm{Y}=4 \sin \left[\pi\left(\frac{\mathrm{t}}{5}-\frac{\mathrm{x}}{9}\right)+\frac{\pi}{6}\right]$ $\mathrm{Y}=4 \sin \left[\frac{\pi \mathrm{t}}{5}-\frac{\pi \mathrm{x}}{9}+\frac{\pi}{6}\right]$ Comparing of equation with standard equation $\mathrm{y}=\mathrm{a} \sin \left(\frac{2 \pi}{\mathrm{T}} \cdot \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi_{\mathrm{o}}\right)$ $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{\pi \mathrm{x}}{9}$ $\lambda=18 \mathrm{~m}$
172305
In a medium in which a transverse progressive wave travelling, the phase difference between the points with a separation of $1.25 \mathrm{~cm}$ is $\pi / 4$. If the frequency of wave is $1000 \mathrm{~Hz}$, the velocity in the medium is.
1 $10^{4} \mathrm{~ms}^{-1}$
2 $125 \mathrm{~ms}^{-1}$
3 $100 \mathrm{~ms}^{-1}$
4 $10 \mathrm{~ms}^{-1}$
Explanation:
C We know that, Given that $\mathrm{f}=1000 \mathrm{~Hz}$ $\Delta \phi=\pi / 4, \Delta \mathrm{x}=1.25 \mathrm{~cm}=1.25 \times 10^{-2} \mathrm{~m}$ Relation between path difference and phase difference We know, $\Delta \phi=\frac{2 \pi \times \Delta \mathrm{x}}{\lambda}$ $\frac{\pi}{4}=\frac{2 \pi}{\lambda} \times 1.25 \times 10^{-2}$ $\lambda=0.1 \mathrm{~m}$ $\mathrm{v}=\mathrm{f} \lambda$ $\mathrm{v}=1000 \times 0.1$ $\mathrm{v}=100 \mathrm{~m} / \mathrm{sec}$
AP EAMCET(Medical)-2015
WAVES
172306
A progressive wave of frequency $500 \mathrm{~Hz}$ is travelling with a speed of $330 \mathrm{~m} / \mathrm{s}$ in air. The distance between the two points which have a phase difference of $30^{\circ}$ is
172308
A light wave and a sound wave same frequency $f$ and their wavelengths are respectively $\lambda_{L}$, and $\lambda_{S}$, then:
1 $\lambda_{\mathrm{L}}=\lambda_{\mathrm{S}}$
2 $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
3 $\lambda_{\mathrm{L}}<\lambda_{\mathrm{S}}$
4 $\lambda_{\mathrm{L}}=2 \lambda_{\mathrm{S}}$
Explanation:
B Given that Wave length of light wave $\lambda_{\mathrm{L}}=\frac{\mathrm{c}}{\mathrm{f}} \quad(\mathrm{c}=\text { velocity of light })$ And wave length of sound wave $\lambda_{\mathrm{s}}=\frac{\mathrm{v}}{\mathrm{f}} \quad(\mathrm{v}=\text { velocity of sound })$ Now, $\frac{\lambda_{L}}{\lambda_{S}}=\frac{c / f}{v / f}=\frac{c}{v}$ We know, $\mathrm{c}>>\mathrm{v}$ $\frac{\lambda_{\mathrm{L}}}{\lambda_{\mathrm{S}}}=\frac{\mathrm{c}}{\mathrm{v}}>1$ $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
AP EAMCET(Medical)-2005
WAVES
172312
Equation of progressive wave is given by $y=4 \sin \left[\pi\left(\frac{t}{5}-\frac{x}{9}\right)+\frac{\pi}{6}\right]$ Then, which of the following is correct ?
1 $\mathrm{v}=5 \mathrm{~cm}$
2 $\lambda=18 \mathrm{~cm}$
3 $\mathrm{a}=0.04 \mathrm{~cm}$
4 $\mathrm{f}=50 \mathrm{~Hz}$
Explanation:
B Given, progressive wave equation $\mathrm{Y}=4 \sin \left[\pi\left(\frac{\mathrm{t}}{5}-\frac{\mathrm{x}}{9}\right)+\frac{\pi}{6}\right]$ $\mathrm{Y}=4 \sin \left[\frac{\pi \mathrm{t}}{5}-\frac{\pi \mathrm{x}}{9}+\frac{\pi}{6}\right]$ Comparing of equation with standard equation $\mathrm{y}=\mathrm{a} \sin \left(\frac{2 \pi}{\mathrm{T}} \cdot \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi_{\mathrm{o}}\right)$ $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{\pi \mathrm{x}}{9}$ $\lambda=18 \mathrm{~m}$
172305
In a medium in which a transverse progressive wave travelling, the phase difference between the points with a separation of $1.25 \mathrm{~cm}$ is $\pi / 4$. If the frequency of wave is $1000 \mathrm{~Hz}$, the velocity in the medium is.
1 $10^{4} \mathrm{~ms}^{-1}$
2 $125 \mathrm{~ms}^{-1}$
3 $100 \mathrm{~ms}^{-1}$
4 $10 \mathrm{~ms}^{-1}$
Explanation:
C We know that, Given that $\mathrm{f}=1000 \mathrm{~Hz}$ $\Delta \phi=\pi / 4, \Delta \mathrm{x}=1.25 \mathrm{~cm}=1.25 \times 10^{-2} \mathrm{~m}$ Relation between path difference and phase difference We know, $\Delta \phi=\frac{2 \pi \times \Delta \mathrm{x}}{\lambda}$ $\frac{\pi}{4}=\frac{2 \pi}{\lambda} \times 1.25 \times 10^{-2}$ $\lambda=0.1 \mathrm{~m}$ $\mathrm{v}=\mathrm{f} \lambda$ $\mathrm{v}=1000 \times 0.1$ $\mathrm{v}=100 \mathrm{~m} / \mathrm{sec}$
AP EAMCET(Medical)-2015
WAVES
172306
A progressive wave of frequency $500 \mathrm{~Hz}$ is travelling with a speed of $330 \mathrm{~m} / \mathrm{s}$ in air. The distance between the two points which have a phase difference of $30^{\circ}$ is
172308
A light wave and a sound wave same frequency $f$ and their wavelengths are respectively $\lambda_{L}$, and $\lambda_{S}$, then:
1 $\lambda_{\mathrm{L}}=\lambda_{\mathrm{S}}$
2 $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
3 $\lambda_{\mathrm{L}}<\lambda_{\mathrm{S}}$
4 $\lambda_{\mathrm{L}}=2 \lambda_{\mathrm{S}}$
Explanation:
B Given that Wave length of light wave $\lambda_{\mathrm{L}}=\frac{\mathrm{c}}{\mathrm{f}} \quad(\mathrm{c}=\text { velocity of light })$ And wave length of sound wave $\lambda_{\mathrm{s}}=\frac{\mathrm{v}}{\mathrm{f}} \quad(\mathrm{v}=\text { velocity of sound })$ Now, $\frac{\lambda_{L}}{\lambda_{S}}=\frac{c / f}{v / f}=\frac{c}{v}$ We know, $\mathrm{c}>>\mathrm{v}$ $\frac{\lambda_{\mathrm{L}}}{\lambda_{\mathrm{S}}}=\frac{\mathrm{c}}{\mathrm{v}}>1$ $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
AP EAMCET(Medical)-2005
WAVES
172312
Equation of progressive wave is given by $y=4 \sin \left[\pi\left(\frac{t}{5}-\frac{x}{9}\right)+\frac{\pi}{6}\right]$ Then, which of the following is correct ?
1 $\mathrm{v}=5 \mathrm{~cm}$
2 $\lambda=18 \mathrm{~cm}$
3 $\mathrm{a}=0.04 \mathrm{~cm}$
4 $\mathrm{f}=50 \mathrm{~Hz}$
Explanation:
B Given, progressive wave equation $\mathrm{Y}=4 \sin \left[\pi\left(\frac{\mathrm{t}}{5}-\frac{\mathrm{x}}{9}\right)+\frac{\pi}{6}\right]$ $\mathrm{Y}=4 \sin \left[\frac{\pi \mathrm{t}}{5}-\frac{\pi \mathrm{x}}{9}+\frac{\pi}{6}\right]$ Comparing of equation with standard equation $\mathrm{y}=\mathrm{a} \sin \left(\frac{2 \pi}{\mathrm{T}} \cdot \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi_{\mathrm{o}}\right)$ $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{\pi \mathrm{x}}{9}$ $\lambda=18 \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
WAVES
172305
In a medium in which a transverse progressive wave travelling, the phase difference between the points with a separation of $1.25 \mathrm{~cm}$ is $\pi / 4$. If the frequency of wave is $1000 \mathrm{~Hz}$, the velocity in the medium is.
1 $10^{4} \mathrm{~ms}^{-1}$
2 $125 \mathrm{~ms}^{-1}$
3 $100 \mathrm{~ms}^{-1}$
4 $10 \mathrm{~ms}^{-1}$
Explanation:
C We know that, Given that $\mathrm{f}=1000 \mathrm{~Hz}$ $\Delta \phi=\pi / 4, \Delta \mathrm{x}=1.25 \mathrm{~cm}=1.25 \times 10^{-2} \mathrm{~m}$ Relation between path difference and phase difference We know, $\Delta \phi=\frac{2 \pi \times \Delta \mathrm{x}}{\lambda}$ $\frac{\pi}{4}=\frac{2 \pi}{\lambda} \times 1.25 \times 10^{-2}$ $\lambda=0.1 \mathrm{~m}$ $\mathrm{v}=\mathrm{f} \lambda$ $\mathrm{v}=1000 \times 0.1$ $\mathrm{v}=100 \mathrm{~m} / \mathrm{sec}$
AP EAMCET(Medical)-2015
WAVES
172306
A progressive wave of frequency $500 \mathrm{~Hz}$ is travelling with a speed of $330 \mathrm{~m} / \mathrm{s}$ in air. The distance between the two points which have a phase difference of $30^{\circ}$ is
172308
A light wave and a sound wave same frequency $f$ and their wavelengths are respectively $\lambda_{L}$, and $\lambda_{S}$, then:
1 $\lambda_{\mathrm{L}}=\lambda_{\mathrm{S}}$
2 $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
3 $\lambda_{\mathrm{L}}<\lambda_{\mathrm{S}}$
4 $\lambda_{\mathrm{L}}=2 \lambda_{\mathrm{S}}$
Explanation:
B Given that Wave length of light wave $\lambda_{\mathrm{L}}=\frac{\mathrm{c}}{\mathrm{f}} \quad(\mathrm{c}=\text { velocity of light })$ And wave length of sound wave $\lambda_{\mathrm{s}}=\frac{\mathrm{v}}{\mathrm{f}} \quad(\mathrm{v}=\text { velocity of sound })$ Now, $\frac{\lambda_{L}}{\lambda_{S}}=\frac{c / f}{v / f}=\frac{c}{v}$ We know, $\mathrm{c}>>\mathrm{v}$ $\frac{\lambda_{\mathrm{L}}}{\lambda_{\mathrm{S}}}=\frac{\mathrm{c}}{\mathrm{v}}>1$ $\lambda_{\mathrm{L}}>\lambda_{\mathrm{S}}$
AP EAMCET(Medical)-2005
WAVES
172312
Equation of progressive wave is given by $y=4 \sin \left[\pi\left(\frac{t}{5}-\frac{x}{9}\right)+\frac{\pi}{6}\right]$ Then, which of the following is correct ?
1 $\mathrm{v}=5 \mathrm{~cm}$
2 $\lambda=18 \mathrm{~cm}$
3 $\mathrm{a}=0.04 \mathrm{~cm}$
4 $\mathrm{f}=50 \mathrm{~Hz}$
Explanation:
B Given, progressive wave equation $\mathrm{Y}=4 \sin \left[\pi\left(\frac{\mathrm{t}}{5}-\frac{\mathrm{x}}{9}\right)+\frac{\pi}{6}\right]$ $\mathrm{Y}=4 \sin \left[\frac{\pi \mathrm{t}}{5}-\frac{\pi \mathrm{x}}{9}+\frac{\pi}{6}\right]$ Comparing of equation with standard equation $\mathrm{y}=\mathrm{a} \sin \left(\frac{2 \pi}{\mathrm{T}} \cdot \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi_{\mathrm{o}}\right)$ $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{\pi \mathrm{x}}{9}$ $\lambda=18 \mathrm{~m}$