Wave and Wave characteristics
WAVES

172261 A point moves along $x$-axis according to the law $x=\operatorname{asin}^{2}\left(\omega t-\frac{\pi}{4}\right)$. The amplitude and time period of oscillation of the point are respectively:

1 $\mathrm{a}, \frac{\pi}{2 \omega}$
2 $\frac{\mathrm{a}}{2}, \frac{\pi}{\omega}$
3 $\frac{\mathrm{a}}{2}, \frac{\pi}{2 \omega}$
4 $\mathrm{a}, \frac{\pi}{\omega}$
WAVES

172275 If a wave displacement is $y=0.5 \sin (0.1 \mathrm{x}+$ $0.4 t)$, where all quantities are in S.I. units, the time period is

1 $2.5 \mathrm{~s}$
2 $0.4 \mathrm{~s}$
3 $0.1 \mathrm{~s}$
4 $15.7 \mathrm{~s}$
WAVES

172263 The equation of a wave is given by $y=10$ $\sin \left(\frac{2 \pi}{45} t+\alpha\right)$. If the displacement is $5 \mathrm{~cm}$ at $\mathrm{t}=$ 0 , then the total phase at $t=7.5 \mathrm{~s}$ is :

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172264 $y=3 \sin \pi\left(\frac{t}{2}-\frac{x}{4}\right)$ represents an equation of a progressive wave, where $t$ is in second and $x$ is in metre. The distance travelled by the wave in $5 \mathrm{~s}$ is :

1 $8 \mathrm{~m}$
2 $10 \mathrm{~m}$
3 $5 \mathrm{~m}$
4 $32 \mathrm{~m}$
WAVES

172261 A point moves along $x$-axis according to the law $x=\operatorname{asin}^{2}\left(\omega t-\frac{\pi}{4}\right)$. The amplitude and time period of oscillation of the point are respectively:

1 $\mathrm{a}, \frac{\pi}{2 \omega}$
2 $\frac{\mathrm{a}}{2}, \frac{\pi}{\omega}$
3 $\frac{\mathrm{a}}{2}, \frac{\pi}{2 \omega}$
4 $\mathrm{a}, \frac{\pi}{\omega}$
WAVES

172275 If a wave displacement is $y=0.5 \sin (0.1 \mathrm{x}+$ $0.4 t)$, where all quantities are in S.I. units, the time period is

1 $2.5 \mathrm{~s}$
2 $0.4 \mathrm{~s}$
3 $0.1 \mathrm{~s}$
4 $15.7 \mathrm{~s}$
WAVES

172263 The equation of a wave is given by $y=10$ $\sin \left(\frac{2 \pi}{45} t+\alpha\right)$. If the displacement is $5 \mathrm{~cm}$ at $\mathrm{t}=$ 0 , then the total phase at $t=7.5 \mathrm{~s}$ is :

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172264 $y=3 \sin \pi\left(\frac{t}{2}-\frac{x}{4}\right)$ represents an equation of a progressive wave, where $t$ is in second and $x$ is in metre. The distance travelled by the wave in $5 \mathrm{~s}$ is :

1 $8 \mathrm{~m}$
2 $10 \mathrm{~m}$
3 $5 \mathrm{~m}$
4 $32 \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172261 A point moves along $x$-axis according to the law $x=\operatorname{asin}^{2}\left(\omega t-\frac{\pi}{4}\right)$. The amplitude and time period of oscillation of the point are respectively:

1 $\mathrm{a}, \frac{\pi}{2 \omega}$
2 $\frac{\mathrm{a}}{2}, \frac{\pi}{\omega}$
3 $\frac{\mathrm{a}}{2}, \frac{\pi}{2 \omega}$
4 $\mathrm{a}, \frac{\pi}{\omega}$
WAVES

172275 If a wave displacement is $y=0.5 \sin (0.1 \mathrm{x}+$ $0.4 t)$, where all quantities are in S.I. units, the time period is

1 $2.5 \mathrm{~s}$
2 $0.4 \mathrm{~s}$
3 $0.1 \mathrm{~s}$
4 $15.7 \mathrm{~s}$
WAVES

172263 The equation of a wave is given by $y=10$ $\sin \left(\frac{2 \pi}{45} t+\alpha\right)$. If the displacement is $5 \mathrm{~cm}$ at $\mathrm{t}=$ 0 , then the total phase at $t=7.5 \mathrm{~s}$ is :

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172264 $y=3 \sin \pi\left(\frac{t}{2}-\frac{x}{4}\right)$ represents an equation of a progressive wave, where $t$ is in second and $x$ is in metre. The distance travelled by the wave in $5 \mathrm{~s}$ is :

1 $8 \mathrm{~m}$
2 $10 \mathrm{~m}$
3 $5 \mathrm{~m}$
4 $32 \mathrm{~m}$
WAVES

172261 A point moves along $x$-axis according to the law $x=\operatorname{asin}^{2}\left(\omega t-\frac{\pi}{4}\right)$. The amplitude and time period of oscillation of the point are respectively:

1 $\mathrm{a}, \frac{\pi}{2 \omega}$
2 $\frac{\mathrm{a}}{2}, \frac{\pi}{\omega}$
3 $\frac{\mathrm{a}}{2}, \frac{\pi}{2 \omega}$
4 $\mathrm{a}, \frac{\pi}{\omega}$
WAVES

172275 If a wave displacement is $y=0.5 \sin (0.1 \mathrm{x}+$ $0.4 t)$, where all quantities are in S.I. units, the time period is

1 $2.5 \mathrm{~s}$
2 $0.4 \mathrm{~s}$
3 $0.1 \mathrm{~s}$
4 $15.7 \mathrm{~s}$
WAVES

172263 The equation of a wave is given by $y=10$ $\sin \left(\frac{2 \pi}{45} t+\alpha\right)$. If the displacement is $5 \mathrm{~cm}$ at $\mathrm{t}=$ 0 , then the total phase at $t=7.5 \mathrm{~s}$ is :

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172264 $y=3 \sin \pi\left(\frac{t}{2}-\frac{x}{4}\right)$ represents an equation of a progressive wave, where $t$ is in second and $x$ is in metre. The distance travelled by the wave in $5 \mathrm{~s}$ is :

1 $8 \mathrm{~m}$
2 $10 \mathrm{~m}$
3 $5 \mathrm{~m}$
4 $32 \mathrm{~m}$